呼吸道上皮细胞的三维纳米级结构揭示了运动纤毛-小根-线粒体的通信轴

Aaran Vijayakumaran, Christopher Godbehere, Analle Abuammar, Sophia Y Breusegem, Leah R. Hurst, Nobuhiro Morone, Jaime Llodra, Melis T. Dalbay, Niaj M. Tanvir, Kirsty MacLellan-Gibson, Chris O'Callaghan, Esben Lorentzen, CellMap Project Team, FIB-SEM Technology, Andrew Murray, Kedar Narayan, Vito Mennella
{"title":"呼吸道上皮细胞的三维纳米级结构揭示了运动纤毛-小根-线粒体的通信轴","authors":"Aaran Vijayakumaran, Christopher Godbehere, Analle Abuammar, Sophia Y Breusegem, Leah R. Hurst, Nobuhiro Morone, Jaime Llodra, Melis T. Dalbay, Niaj M. Tanvir, Kirsty MacLellan-Gibson, Chris O'Callaghan, Esben Lorentzen, CellMap Project Team, FIB-SEM Technology, Andrew Murray, Kedar Narayan, Vito Mennella","doi":"10.1101/2024.09.08.611854","DOIUrl":null,"url":null,"abstract":"A major frontier in single cell biology is decoding how transcriptional states result in cellular-level architectural changes, ultimately driving function. A remarkable example of this cellular remodelling program is the differentiation of airway stem cells into the human respiratory multiciliated epithelium, a tissue barrier protecting against bacteria, viruses and particulate matter. Here, we present the first isotropic three-dimensional map of the airway epithelium at the nanometre scale unveiling the coordinated changes in cellular organisation, organelle topology and contacts, occurring during multiciliogenesis. This analysis led us to discover a cellular mechanism of communication whereby motile cilia relay mechanical information to mitochondria through striated cytoskeletal fibres, the rootlets, to promote effective ciliary motility and ATP generation. Altogether, this study integrates nanometre-scale structural, functional and dynamic insights to elucidate fundamental mechanisms responsible for airway defence.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D nanoscale architecture of the respiratory epithelium reveals motile cilia-rootlets-mitochondria axis of communication\",\"authors\":\"Aaran Vijayakumaran, Christopher Godbehere, Analle Abuammar, Sophia Y Breusegem, Leah R. Hurst, Nobuhiro Morone, Jaime Llodra, Melis T. Dalbay, Niaj M. Tanvir, Kirsty MacLellan-Gibson, Chris O'Callaghan, Esben Lorentzen, CellMap Project Team, FIB-SEM Technology, Andrew Murray, Kedar Narayan, Vito Mennella\",\"doi\":\"10.1101/2024.09.08.611854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major frontier in single cell biology is decoding how transcriptional states result in cellular-level architectural changes, ultimately driving function. A remarkable example of this cellular remodelling program is the differentiation of airway stem cells into the human respiratory multiciliated epithelium, a tissue barrier protecting against bacteria, viruses and particulate matter. Here, we present the first isotropic three-dimensional map of the airway epithelium at the nanometre scale unveiling the coordinated changes in cellular organisation, organelle topology and contacts, occurring during multiciliogenesis. This analysis led us to discover a cellular mechanism of communication whereby motile cilia relay mechanical information to mitochondria through striated cytoskeletal fibres, the rootlets, to promote effective ciliary motility and ATP generation. Altogether, this study integrates nanometre-scale structural, functional and dynamic insights to elucidate fundamental mechanisms responsible for airway defence.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.08.611854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.08.611854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞生物学的一个重要前沿领域是解码转录状态如何导致细胞级结构变化,并最终驱动功能。气道干细胞分化成人类呼吸道多纤毛上皮细胞就是这种细胞重塑程序的一个杰出范例,多纤毛上皮细胞是抵御细菌、病毒和微粒物质的组织屏障。在这里,我们首次展示了气道上皮纳米尺度的各向同性三维图,揭示了多纤毛发生过程中细胞组织、细胞器拓扑和接触的协调变化。这项分析使我们发现了一种细胞通信机制,即运动纤毛通过条状细胞骨架纤维(小根)向线粒体传递机械信息,以促进有效的纤毛运动和 ATP 生成。总之,这项研究综合了纳米尺度的结构、功能和动态见解,阐明了气道防御的基本机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D nanoscale architecture of the respiratory epithelium reveals motile cilia-rootlets-mitochondria axis of communication
A major frontier in single cell biology is decoding how transcriptional states result in cellular-level architectural changes, ultimately driving function. A remarkable example of this cellular remodelling program is the differentiation of airway stem cells into the human respiratory multiciliated epithelium, a tissue barrier protecting against bacteria, viruses and particulate matter. Here, we present the first isotropic three-dimensional map of the airway epithelium at the nanometre scale unveiling the coordinated changes in cellular organisation, organelle topology and contacts, occurring during multiciliogenesis. This analysis led us to discover a cellular mechanism of communication whereby motile cilia relay mechanical information to mitochondria through striated cytoskeletal fibres, the rootlets, to promote effective ciliary motility and ATP generation. Altogether, this study integrates nanometre-scale structural, functional and dynamic insights to elucidate fundamental mechanisms responsible for airway defence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信