Vanessa Oliveira Di Sarli Peixoto, Gabriela Baptista Brito, Erika Christina Ashton Nunes Chrisman, Ana Lúcia do Amaral Vendramini, Juliana Neves Rodrigues Ract, João Gabriel Passos Rodrigues, Marcos Lopes Dias, Alvicler Magalhães, Denes Kaic Alves do Rosário, Carlos Adam Conte‐Junior, Thiago Oliveira Marinho, Márcio Nele, Alexandre Guedes Torres, Vanessa Naciuk Castelo‐Branco
{"title":"Tailoring candelilla wax‐based oleogels loaded with α‐tocopherol to mimic rheological properties of solid food fats and to increase nutritional value of food","authors":"Vanessa Oliveira Di Sarli Peixoto, Gabriela Baptista Brito, Erika Christina Ashton Nunes Chrisman, Ana Lúcia do Amaral Vendramini, Juliana Neves Rodrigues Ract, João Gabriel Passos Rodrigues, Marcos Lopes Dias, Alvicler Magalhães, Denes Kaic Alves do Rosário, Carlos Adam Conte‐Junior, Thiago Oliveira Marinho, Márcio Nele, Alexandre Guedes Torres, Vanessa Naciuk Castelo‐Branco","doi":"10.1002/aocs.12884","DOIUrl":"https://doi.org/10.1002/aocs.12884","url":null,"abstract":"This study aimed to tailor candelilla wax (CLW)‐based oleogels loaded with α‐tocopherol to mimic the rheological properties of conventional solid fats and enhance the nutritional value of food products. Desirability approach was utilized to optimize oleogels formulations based on rheological parameters of yield stress and gel‐to‐sol transition temperature of conventional solid fats (hydrogenated fat, butter, and margarine). Fat‐tailored oleogels were also characterized by their texture, thermal behavior, and microstructure. The concentration of CLW (0.75–4.0 wt%), but not of α‐tocopherol (0.5–10 wt%), affected the rheological behavior of oleogels. Yield stress and the gel‐to‐sol transition increased, respectively, from 2.00 to 200.8 Pa and from 40.2 to 64.8°C as the CLW concentration increased. α‐Tocopherol can be added to improve the nutritional value of CLW‐based oleogels without affecting their rheological fingerprint. The optimum formulations to mimic the rheological fingerprint of butter, margarine, and hydrogenated fat comprised CLW between 2.12 and 2.51 wt%, showing desirability values of 0.58, 0.76, and 0.73, respectively. Increasing the CLW contents increased the crystal number (4194 ± 381 to 7646 ± 544) and hardness (6.45 ± 0.30 to 10.4 ± 0.36 N) of fat‐tailored oleogels, besides accelerating crystallization. Therefore, it was possible to tailor oleogels structured with low CLW concentration (<2.5 wt%) loaded with α‐tocopherol to fairly replicate the rheological properties of margarine and hydrogenated fat. Butter‐like properties were achieved to a lesser extent. These oleogels might enhance the nutritional value of food products by incorporating the antioxidant vitamin E when used as substitutes for solid fat.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sophorolipids, commercialized glycolipid biosurfactants: Derivatives, component analysis, and applications","authors":"Yosuke Kobayashi, Tokuma Fukuoka","doi":"10.1002/aocs.12883","DOIUrl":"https://doi.org/10.1002/aocs.12883","url":null,"abstract":"Biosurfactants contain various kinds of compounds and have complex structures because they are derived from microorganisms. Sophorolipids (SLs) are biosurfactants that are being commercialized. However, there are issues with fermentation technology and interface science due to the presence of many derivatives, which has become a bottleneck for the commercial expansion of SLs. This review addresses this issue. First, SL derivatives are described, including acid, lactone, bola, and glyceride forms. Then, the yeasts that produce various SL derivatives are described. Next, methods for measuring SL concentrations and component ratios are described, including high‐performance liquid chromatography with methanol. Finally, their applications in toiletries, cosmetics, medicine, livestock, agriculture, and the environment are described, and we discuss the importance of measuring SL concentrations and derivative ratios as technical challenges to revitalize the SL market.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kurshid Zubairee, Hasan Yalcin, Tugba Dursun Capar
{"title":"Sunflower oil‐soybean wax oleogel: An oxidation stable alternative to traditional frying methods for doughnut","authors":"Kurshid Zubairee, Hasan Yalcin, Tugba Dursun Capar","doi":"10.1002/aocs.12882","DOIUrl":"https://doi.org/10.1002/aocs.12882","url":null,"abstract":"Deep‐frying changes the quality of the oil through hydrolysis, oxidation, and polymerization, which makes both positive and harmful changes in the oil and fried food items. In this study sunflower oil was combined with soybean wax to create oleogels that were assessed for their ability to reduce fat uptake and maintain oxidative stability during the deep‐fat frying of doughnut samples. The oleogel was tested as a potential alternative to traditional deep‐fat frying with sunflower oil for frying doughnuts. The different frying times of oleogel were examined to assess the physical properties of the oleogel. Afterward, a comparative analysis was conducted between doughnuts fried in sunflower oil and oleogel. The results showed that doughnuts fried in oleogel absorbed approximately 37.8% less oil than those fried in sunflower oil. Additionally, the doughnuts fried in oleogel had a better appearance, with a higher lightness value (<jats:italic>L</jats:italic>*) (87.73 ± 0.8) than those fried in oil (77.72 ± 1.35). Moreover, the redness value, (<jats:italic>a</jats:italic>*) of oleogel doughnuts was also lower (0.33 ± 0.25) than those fried in oil (0.37 ± 0.9). The blueness or yellowness (<jats:italic>b</jats:italic>*) of the doughnuts was not significantly different which was found as 1.52 and 1.54, for oleogel and oil samples, respectively. Although the viscosity values of oleogel were higher during extended frying, the lower peroxide, free fatty acid, <jats:italic>p‐</jats:italic>Anisidine, conjugated diene, and triene values suggest that oleogel is more stable. These results will provide a significant advantage in the usage of sunflower oil‐soybean wax oleogel as a frying medium with improved stability.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Kouighat, Ibtissame Guirrou, Abderraouf El Antari, Mohamed El Fechtali, Abdelghani Bouchyoua, Abdelghani Nabloussi
{"title":"Exploring fatty acid composition, bioactive compounds, and antioxidant properties in oils of newly developed sesame mutant lines in Morocco","authors":"Mohamed Kouighat, Ibtissame Guirrou, Abderraouf El Antari, Mohamed El Fechtali, Abdelghani Bouchyoua, Abdelghani Nabloussi","doi":"10.1002/aocs.12879","DOIUrl":"https://doi.org/10.1002/aocs.12879","url":null,"abstract":"Sesame (<jats:italic>Sesamum indicum</jats:italic> L.) is renowned for its significance as a global oilseed crop, valued for its high oil content and nutritional properties. This study aimed to explore the fatty acid composition, bioactive compounds, and antioxidant attributes of sesame mutant oils, examining their potential applications in food industry. Nine M<jats:sub>4</jats:sub> mutants, along with their parents, were grown in two contrasting environments (Taoujdate and Afourare) to investigate their seed oil, phenolic and flavonoid contents, the balance between omega‐6, omega‐9, and omega‐3 fatty acids, iodine value, and susceptibility to oxidation. Genotype and environment main effects as well as their interaction had a significant effect on the majority of the parameters studied. The mutant “US2‐1” stands out with a distinctive fatty acid profile, featuring the highest saturated fatty acids, ω‐6/ω‐9 ratio, and omega‐3 content, in addition to its high total flavonoid content and remarkable oxidative stability. “ML2‐10,” “US1‐2,” “US2‐6,” and “US2‐7” exhibit high oil content, coupled with substantial levels of phenols and flavonoids, rendering them excellent candidates for culinary and industrial applications where oxidative stability is important. “ML2‐68,” “ML2‐72,” “US06,” “US1‐DL,” and “US1‐3” offer versatile options with their moderate oil content and fatty acid profiles that resist oxidation. This research highlights the potential for breeding sesame mutants tailored to specific applications, contributing to both enhanced oil production and improved nutritional value. The insights gained here pave the way for the development of sesame varieties with superior nutritional and functional attributes, thereby promoting the sustainable production and consumption of sesame oil.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David L. Compton, Bryant A. Pero, Garris H. C. Radloff, Roque L. Evangelista, Jill K. Winkler‐Moser, James A. Kenar, Steven C. Cermak, Michael Appell, Kervin O. Evans, Evan C. Wegener, Hanah T. Rheay, Christopher D. Skory
{"title":"Lipase‐catalyzed transesterification of virgin and refined hemp seed oil with ferulic acid ethyl ester","authors":"David L. Compton, Bryant A. Pero, Garris H. C. Radloff, Roque L. Evangelista, Jill K. Winkler‐Moser, James A. Kenar, Steven C. Cermak, Michael Appell, Kervin O. Evans, Evan C. Wegener, Hanah T. Rheay, Christopher D. Skory","doi":"10.1002/aocs.12849","DOIUrl":"https://doi.org/10.1002/aocs.12849","url":null,"abstract":"The transesterification of ethyl ferulate (EF) and unrefined, virgin, cold pressed hemp seed oil (HO<jats:sub>V</jats:sub>) and refined, bleached, deodorized cold pressed hemp seed oil (HO<jats:sub>R</jats:sub>) using a commercial lipase, Novozym 435 (<jats:italic>Candida antarctica</jats:italic> B lipase immobilized on an acrylic resin), was examined in 150‐mL, shaken, batch reactions at 60°C for 2 weeks. The reactions produced feruloylated hemp seed oils, FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub>, respectively, and the reactions were monitored to determine the difference between virgin and refined hemp seed oil on the transesterifications. The FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> reactions both reached EF conversion equilibrium of 58% after ca. 168 h. Ultraviolet (UV) absorbing and antioxidant capacity of the FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> were determined. Both FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> (50 μM in ethanol) were excellent UVA II absorbers, <jats:italic>λ</jats:italic><jats:sub>max</jats:sub> 322 nm, and exhibited absorption into the UVB. The DDPH* radical (200 μM) scavenging of the FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> (0.25–2.5 mM) were both shown to be rapid antioxidants (50% DDPH* radical scavenged in <5 min) at 1.0 and 2.5 mM suggesting that inherent components contained in the HO<jats:sub>V</jats:sub> did not adversely affect enzyme activity relative to transesterification using HO<jats:sub>R</jats:sub>. Overall, using less expensive, unrefined, virgin hemp seed oil versus more expensive, refined hemp seed oil did not appreciably affect the enzyme kinetics of the transesterification reactions nor the UV absorbing and antioxidant efficacy of the resultant feruloylated hemp seed oils, making FHO<jats:sub>V</jats:sub> a less expensively produced feruloylated hemp seed oil for cosmetic and personal care applications.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"253 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Jin Lee, Mi Soon Park, Byung Hee Kim, Yangha Kim, In‐Hwan Kim
{"title":"Synthesis of pinolenic acid‐enriched triacylglycerol from pine nut oil via a two‐step consecutive enzyme reaction: Comparison of acyl donors","authors":"Yu Jin Lee, Mi Soon Park, Byung Hee Kim, Yangha Kim, In‐Hwan Kim","doi":"10.1002/aocs.12881","DOIUrl":"https://doi.org/10.1002/aocs.12881","url":null,"abstract":"Pinolenic acid (PLA) is a plant‐origin <jats:italic>Δ</jats:italic>5‐unsaturated polymethylene‐interrupted fatty acid that provides several beneficial health effects to the human body. A two‐step lipase‐catalyzed reaction was carried out to synthesize PLA‐enriched triacylglycerol (TAG) with pine nut oil (PNO) in the present study. In the first step, PLA was efficiently enriched from an initial value of 15–43 mol% in ethyl ester of the reaction mixture after Lipozyme 435‐catalyzed ethanolysis with PNO. In the second step, PLA‐enriched TAG was efficiently synthesized with the fatty acid form via Lipozyme 435‐catalyzed esterification at all temperatures when both ethyl ester form and fatty acid form were compared as acyl donors. The effect of vacuum on the synthesis of PLA‐enriched TAG with glycerol and PLA‐enriched fatty acid was studied. The optimum temperature and vacuum were 60°C, and 50 mmHg, respectively. A maximum TAG conversion of approximately 95% was achieved after 12 h under the optimum conditions.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Gonçales Filho, Fernanda Mugnaini Lulu de Toledo, Andrea Maria Alves, Marco Aurelio Jeanegitz Clemente, Ana Carolina Gomes Mantovani, Karina Benassi Angilelli
{"title":"Evaluation of the influence of chromium(III) ions and protoporphyrin IX on the oxidative stability of biodiesel","authors":"José Gonçales Filho, Fernanda Mugnaini Lulu de Toledo, Andrea Maria Alves, Marco Aurelio Jeanegitz Clemente, Ana Carolina Gomes Mantovani, Karina Benassi Angilelli","doi":"10.1002/aocs.12878","DOIUrl":"https://doi.org/10.1002/aocs.12878","url":null,"abstract":"This study aimed to investigate the impact of porphyrin complexes with Cr<jats:sup>3+</jats:sup> on the oxidative stability of biodiesel. Specifically, it focused on assessing the induction period as well as the fluorescence and FTIR spectroscopy, kinetic and thermodynamic parameters of oxidation under varying temperature conditions. The concentration of the metal added in the biodiesel samples, with and without protoporphyrin IX (PPIX), was established based on previous literature. Oxidative stability tests were carried out at 105, 110, 115, and 120°C. The Cr<jats:sup>3+</jats:sup> transition metal ion exhibited low catalytic activity in biodiesel oxidation reactions, and the tests without PPIX showed lower induction period values for all temperatures. PPIX exhibited antioxidant action, delaying both the initiation and propagation stages of chain reactions responsible for the formation of free radicals, thereby enhancing the stability of the biofuel even in the presence of Cr<jats:sup>3+</jats:sup>, when compared to the same test without the addition of the compound. The fluorescence intensity of PPIX decreased as a function of the contact time with the metal ion, and the FTIR analysis of the biodiesel with PPIX presented the most significant variations in the spectra. The tests containing PPIX at all temperatures presented lower values of reaction rate than the control samples, while the test without PPIX with Cr<jats:sup>3+</jats:sup> ion resulted in higher k in comparison to control. The activation energy values ranged from 43.36 to 106.37 kJ mol<jats:sup>−1</jats:sup>. The results of thermodynamic parameters indicated greater stability for biodiesel containing PPIX, with enthalpy activation (Δ<jats:italic>H</jats:italic><jats:sup>‡</jats:sup>) and entropy activation (Δ<jats:italic>S</jats:italic><jats:sup>‡</jats:sup>) values of 103.16 kJ mol<jats:sup>−1</jats:sup> and ‐52.61 J.K<jats:sup>−1</jats:sup>.mol<jats:sup>−1</jats:sup>, respectively.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxin Xie, Nan Jiang, Hongchen Su, Jiao Zhang, Feng Tan, Xi Cheng, Jiyan Wang, Hao Hu
{"title":"The effect of functional lipids on the quality of walnut butter prepared from defatted walnut meal by ball mill grinding","authors":"Yuxin Xie, Nan Jiang, Hongchen Su, Jiao Zhang, Feng Tan, Xi Cheng, Jiyan Wang, Hao Hu","doi":"10.1002/aocs.12880","DOIUrl":"https://doi.org/10.1002/aocs.12880","url":null,"abstract":"In this study, walnut butter was produced by mixing functional lipids with defatted walnut meal. Three kinds of functional lipids (FL), medium‐chain triglycerides (MCT), diacylglycerol (DG), and conjugated linoleic acid glycerides (CLA), were used to make functional lipids walnut butter (DG‐WB, CLA‐WB and MCT‐WB) and their physical properties as well as microscopic morphology were compared with commercial walnut butter. The functional lipids walnut butter (FLWB) was prepared by grinding FL and defatted walnut meal through the ball milling technique. The mixing ratios of FL to defatted walnut meal were 6:4, 6.5:3.5, and 7:3. The volumetric mean particle size of emulsion formed by DG‐WB and CLA‐WB decreased by 36.23% and 20.88%, respectively when the additional amounts of DG, and CLA increased from 60 wt% to 70 wt%. The rheological and microrheological results further indicated that FLWB showed similar gel‐like behavior to commercial walnut butter. Among the FLWB with three different kinds of FL, CLA‐WB appeared more similar apparent viscosity, thixotropy, and elasticity with those of commercial walnut butter. Finally, CLA‐WB with different CLA additive amount was analyzed for microstructure. The results showed that walnut butter prepared with 65 wt% CLA was closer to commercial walnut butter in terms of processed physical properties and micro‐morphology.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of palm oil methyl ester on coconut oil as a viable bio‐lubricant alternative to traditional mineral‐based oils","authors":"Mathai Joseph, Kiran Christopher, Gautham S. Vaidappilly, Twinkle Abraham, Adith Jofy","doi":"10.1002/aocs.12877","DOIUrl":"https://doi.org/10.1002/aocs.12877","url":null,"abstract":"Vegetable oils are promoted as a base oil for automobile lubricants due to increased concerns about the environmental damage caused by synthetic and mineral oils‐derived lubricants. Coconut oil exhibits excellent tribological properties but poor cold flow properties. This work investigates the effect of the addition of palm oil methyl ester (POME), obtained from the transesterification of palm oil, on coconut oil by blending it in three proportions with varying volumes and evaluating for lubricant properties namely tribological properties, rheological properties, thermal properties, chemical properties and corrosion and oxidative stabilities. Fatty acid composition are evaluated for the base oil and the blends. The findings show that the addition of POME improves the base oil's pour point and reduces friction and wear. The corrosion test shows only slight tarnishing of copper strips, while the HOOT and chemical tests indicate appreciable resistance to oxidation. Therefore, this blended mixture has the potential to be a viable bio‐lubricant alternative to traditional mineral‐based oils.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Hsuan How, Kar Lin Nyam, Xian Wei Lee, Md Jahurul Haque Akanda, Chin Ping Tan
{"title":"Effect of microwave frying on the physicochemical properties of palm olein and French fries","authors":"Yu Hsuan How, Kar Lin Nyam, Xian Wei Lee, Md Jahurul Haque Akanda, Chin Ping Tan","doi":"10.1002/aocs.12874","DOIUrl":"https://doi.org/10.1002/aocs.12874","url":null,"abstract":"This study aimed to evaluate the effect of microwave power and duration on French fries using palm olein. The deep‐fat frying was served as a control. The microwave frying of French fries was conducted at low (100 W), medium (600 W), and high (1000 W) for 1, 3, and 5 min. The physicochemical properties of French fries and the quality of palm olein were analyzed. The French fries microwaved at 600 W for 3 min showed comparable hardness (300 g), cohesiveness (0.76), springiness (3.5 mm), adhesion (0.3 mJ), and water activity (0.88 A<jats:sub>w</jats:sub>) to deep‐fat frying. The palm olein demonstrated lower peroxide and para‐anisidine values in microwave frying; while deep‐fat frying had lower total polar compounds in frying oil and lower oil content in oil extracted from French fries. Nevertheless, the high oxidation stability in terms of peroxide and para‐anisidine value in frying oil from microwave frying showed its potential as an alternative frying technique to deep‐fat frying.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}