{"title":"棕榈油甲酯对椰子油作为传统矿物油的可行生物润滑剂替代品的影响","authors":"Mathai Joseph, Kiran Christopher, Gautham S. Vaidappilly, Twinkle Abraham, Adith Jofy","doi":"10.1002/aocs.12877","DOIUrl":null,"url":null,"abstract":"<p>Vegetable oils are promoted as a base oil for automobile lubricants due to increased concerns about the environmental damage caused by synthetic and mineral oils-derived lubricants. Coconut oil exhibits excellent tribological properties but poor cold flow properties. This work investigates the effect of the addition of palm oil methyl ester (POME), obtained from the transesterification of palm oil, on coconut oil by blending it in three proportions with varying volumes and evaluating for lubricant properties namely tribological properties, rheological properties, thermal properties, chemical properties and corrosion and oxidative stabilities. Fatty acid composition are evaluated for the base oil and the blends. The findings show that the addition of POME improves the base oil's pour point and reduces friction and wear. The corrosion test shows only slight tarnishing of copper strips, while the HOOT and chemical tests indicate appreciable resistance to oxidation. Therefore, this blended mixture has the potential to be a viable bio-lubricant alternative to traditional mineral-based oils.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 1","pages":"161-168"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of palm oil methyl ester on coconut oil as a viable bio-lubricant alternative to traditional mineral-based oils\",\"authors\":\"Mathai Joseph, Kiran Christopher, Gautham S. Vaidappilly, Twinkle Abraham, Adith Jofy\",\"doi\":\"10.1002/aocs.12877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vegetable oils are promoted as a base oil for automobile lubricants due to increased concerns about the environmental damage caused by synthetic and mineral oils-derived lubricants. Coconut oil exhibits excellent tribological properties but poor cold flow properties. This work investigates the effect of the addition of palm oil methyl ester (POME), obtained from the transesterification of palm oil, on coconut oil by blending it in three proportions with varying volumes and evaluating for lubricant properties namely tribological properties, rheological properties, thermal properties, chemical properties and corrosion and oxidative stabilities. Fatty acid composition are evaluated for the base oil and the blends. The findings show that the addition of POME improves the base oil's pour point and reduces friction and wear. The corrosion test shows only slight tarnishing of copper strips, while the HOOT and chemical tests indicate appreciable resistance to oxidation. Therefore, this blended mixture has the potential to be a viable bio-lubricant alternative to traditional mineral-based oils.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"102 1\",\"pages\":\"161-168\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12877\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12877","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of palm oil methyl ester on coconut oil as a viable bio-lubricant alternative to traditional mineral-based oils
Vegetable oils are promoted as a base oil for automobile lubricants due to increased concerns about the environmental damage caused by synthetic and mineral oils-derived lubricants. Coconut oil exhibits excellent tribological properties but poor cold flow properties. This work investigates the effect of the addition of palm oil methyl ester (POME), obtained from the transesterification of palm oil, on coconut oil by blending it in three proportions with varying volumes and evaluating for lubricant properties namely tribological properties, rheological properties, thermal properties, chemical properties and corrosion and oxidative stabilities. Fatty acid composition are evaluated for the base oil and the blends. The findings show that the addition of POME improves the base oil's pour point and reduces friction and wear. The corrosion test shows only slight tarnishing of copper strips, while the HOOT and chemical tests indicate appreciable resistance to oxidation. Therefore, this blended mixture has the potential to be a viable bio-lubricant alternative to traditional mineral-based oils.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.