David L. Compton, Bryant A. Pero, Garris H. C. Radloff, Roque L. Evangelista, Jill K. Winkler‐Moser, James A. Kenar, Steven C. Cermak, Michael Appell, Kervin O. Evans, Evan C. Wegener, Hanah T. Rheay, Christopher D. Skory
{"title":"脂肪酶催化初榨和精炼大麻籽油与阿魏酸乙酯的酯交换反应","authors":"David L. Compton, Bryant A. Pero, Garris H. C. Radloff, Roque L. Evangelista, Jill K. Winkler‐Moser, James A. Kenar, Steven C. Cermak, Michael Appell, Kervin O. Evans, Evan C. Wegener, Hanah T. Rheay, Christopher D. Skory","doi":"10.1002/aocs.12849","DOIUrl":null,"url":null,"abstract":"The transesterification of ethyl ferulate (EF) and unrefined, virgin, cold pressed hemp seed oil (HO<jats:sub>V</jats:sub>) and refined, bleached, deodorized cold pressed hemp seed oil (HO<jats:sub>R</jats:sub>) using a commercial lipase, Novozym 435 (<jats:italic>Candida antarctica</jats:italic> B lipase immobilized on an acrylic resin), was examined in 150‐mL, shaken, batch reactions at 60°C for 2 weeks. The reactions produced feruloylated hemp seed oils, FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub>, respectively, and the reactions were monitored to determine the difference between virgin and refined hemp seed oil on the transesterifications. The FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> reactions both reached EF conversion equilibrium of 58% after ca. 168 h. Ultraviolet (UV) absorbing and antioxidant capacity of the FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> were determined. Both FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> (50 μM in ethanol) were excellent UVA II absorbers, <jats:italic>λ</jats:italic><jats:sub>max</jats:sub> 322 nm, and exhibited absorption into the UVB. The DDPH* radical (200 μM) scavenging of the FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> (0.25–2.5 mM) were both shown to be rapid antioxidants (50% DDPH* radical scavenged in <5 min) at 1.0 and 2.5 mM suggesting that inherent components contained in the HO<jats:sub>V</jats:sub> did not adversely affect enzyme activity relative to transesterification using HO<jats:sub>R</jats:sub>. Overall, using less expensive, unrefined, virgin hemp seed oil versus more expensive, refined hemp seed oil did not appreciably affect the enzyme kinetics of the transesterification reactions nor the UV absorbing and antioxidant efficacy of the resultant feruloylated hemp seed oils, making FHO<jats:sub>V</jats:sub> a less expensively produced feruloylated hemp seed oil for cosmetic and personal care applications.","PeriodicalId":501405,"journal":{"name":"The Journal of the American Oil Chemists’ Society","volume":"253 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipase‐catalyzed transesterification of virgin and refined hemp seed oil with ferulic acid ethyl ester\",\"authors\":\"David L. Compton, Bryant A. Pero, Garris H. C. Radloff, Roque L. Evangelista, Jill K. Winkler‐Moser, James A. Kenar, Steven C. Cermak, Michael Appell, Kervin O. Evans, Evan C. Wegener, Hanah T. Rheay, Christopher D. Skory\",\"doi\":\"10.1002/aocs.12849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transesterification of ethyl ferulate (EF) and unrefined, virgin, cold pressed hemp seed oil (HO<jats:sub>V</jats:sub>) and refined, bleached, deodorized cold pressed hemp seed oil (HO<jats:sub>R</jats:sub>) using a commercial lipase, Novozym 435 (<jats:italic>Candida antarctica</jats:italic> B lipase immobilized on an acrylic resin), was examined in 150‐mL, shaken, batch reactions at 60°C for 2 weeks. The reactions produced feruloylated hemp seed oils, FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub>, respectively, and the reactions were monitored to determine the difference between virgin and refined hemp seed oil on the transesterifications. The FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> reactions both reached EF conversion equilibrium of 58% after ca. 168 h. Ultraviolet (UV) absorbing and antioxidant capacity of the FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> were determined. Both FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> (50 μM in ethanol) were excellent UVA II absorbers, <jats:italic>λ</jats:italic><jats:sub>max</jats:sub> 322 nm, and exhibited absorption into the UVB. The DDPH* radical (200 μM) scavenging of the FHO<jats:sub>V</jats:sub> and FHO<jats:sub>R</jats:sub> (0.25–2.5 mM) were both shown to be rapid antioxidants (50% DDPH* radical scavenged in <5 min) at 1.0 and 2.5 mM suggesting that inherent components contained in the HO<jats:sub>V</jats:sub> did not adversely affect enzyme activity relative to transesterification using HO<jats:sub>R</jats:sub>. Overall, using less expensive, unrefined, virgin hemp seed oil versus more expensive, refined hemp seed oil did not appreciably affect the enzyme kinetics of the transesterification reactions nor the UV absorbing and antioxidant efficacy of the resultant feruloylated hemp seed oils, making FHO<jats:sub>V</jats:sub> a less expensively produced feruloylated hemp seed oil for cosmetic and personal care applications.\",\"PeriodicalId\":501405,\"journal\":{\"name\":\"The Journal of the American Oil Chemists’ Society\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the American Oil Chemists’ Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aocs.12849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the American Oil Chemists’ Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aocs.12849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lipase‐catalyzed transesterification of virgin and refined hemp seed oil with ferulic acid ethyl ester
The transesterification of ethyl ferulate (EF) and unrefined, virgin, cold pressed hemp seed oil (HOV) and refined, bleached, deodorized cold pressed hemp seed oil (HOR) using a commercial lipase, Novozym 435 (Candida antarctica B lipase immobilized on an acrylic resin), was examined in 150‐mL, shaken, batch reactions at 60°C for 2 weeks. The reactions produced feruloylated hemp seed oils, FHOV and FHOR, respectively, and the reactions were monitored to determine the difference between virgin and refined hemp seed oil on the transesterifications. The FHOV and FHOR reactions both reached EF conversion equilibrium of 58% after ca. 168 h. Ultraviolet (UV) absorbing and antioxidant capacity of the FHOV and FHOR were determined. Both FHOV and FHOR (50 μM in ethanol) were excellent UVA II absorbers, λmax 322 nm, and exhibited absorption into the UVB. The DDPH* radical (200 μM) scavenging of the FHOV and FHOR (0.25–2.5 mM) were both shown to be rapid antioxidants (50% DDPH* radical scavenged in <5 min) at 1.0 and 2.5 mM suggesting that inherent components contained in the HOV did not adversely affect enzyme activity relative to transesterification using HOR. Overall, using less expensive, unrefined, virgin hemp seed oil versus more expensive, refined hemp seed oil did not appreciably affect the enzyme kinetics of the transesterification reactions nor the UV absorbing and antioxidant efficacy of the resultant feruloylated hemp seed oils, making FHOV a less expensively produced feruloylated hemp seed oil for cosmetic and personal care applications.