Journal of Mechanics最新文献

筛选
英文 中文
miR-452-3p Targets HDAC3 to Inhibit p65 Deacetylation and Activate the NF-κB Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage. miR-452-3p 靶向 HDAC3 抑制 p65 去乙酰化并激活蛛网膜下腔出血后早期脑损伤中的 NF-κB 信号通路
IF 3.5 4区 工程技术
Journal of Mechanics Pub Date : 2022-10-01 Epub Date: 2022-06-01 DOI: 10.1007/s12028-022-01509-z
Junti Lu, Xiaodong Huang, Aiping Deng, Hong Yao, Gao Wu, Na Wang, Hui Gui, Mojie Ren, Shiwen Guo
{"title":"miR-452-3p Targets HDAC3 to Inhibit p65 Deacetylation and Activate the NF-κB Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage.","authors":"Junti Lu, Xiaodong Huang, Aiping Deng, Hong Yao, Gao Wu, Na Wang, Hui Gui, Mojie Ren, Shiwen Guo","doi":"10.1007/s12028-022-01509-z","DOIUrl":"10.1007/s12028-022-01509-z","url":null,"abstract":"<p><strong>Objectives: </strong>Subarachnoid hemorrhage (SAH) is a subtype of stroke, and early brain injury (EBI) is a contributor to its unfavorable outcome. microRNA (miRNA) is abundantly expressed in the brain and participates in brain injury. This study investigated the effect of miR-452-3p on EBI after SAH.</p><p><strong>Methods: </strong>The murine model of SAH was established. miR-452-3p expression was detected 48 h after the model establishment. Neurobehavioral function, blood-brain barrier permeability, brain water content, neuronal apoptosis, and inflammatory factors were evaluated. The cell model of SAH was induced by oxygen hemoglobin. Apoptosis rate, lactate dehydrogenase, and reactive oxygen species were detected. The targeting relationship between miR-452-3p and histone deacetylase 3 (HDAC3) was verified. The acetylation of p65 and the binding of HDAC3 to p65 were detected. The inhibitory protein of the nuclear factor κB pathway (IκBα) was detected. Suberoylanilide hydroxamic acid was injected into the SAH mice treated with miR-452-3p inhibitor.</p><p><strong>Results: </strong>SAH mice showed upregulated miR-452-3p expression; reduced the neurological score; increased blood-brain barrier permeability, brain water content, and neuronal apoptosis; elevated pro-inflammatory factors; and reduced anti-inflammatory factors. SAH increased the apoptosis rate, lactate dehydrogenase release, and reactive oxygen species levels in oxygen-hemoglobin-treated neuron cells. Inhibition of miR-452-3p reversed the above trends. miR-452-3p targeted HDAC3. SAH upregulated p65 acetylation. miR-452-3p inhibitor promoted the binding of HDAC3 to p65, decreased p65 acetylation, and upregulated IκBα. Suberoylanilide hydroxamic acid reversed the protective effect of miR-452-3p inhibitor on SAH mice and aggravated brain injury.</p><p><strong>Conclusions: </strong>miR-452-3p targeted HDAC3 to inhibit the deacetylation of p65 and activate the nuclear factor κB pathway, thus aggravating EBI after SAH.</p>","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"29 1","pages":"558-571"},"PeriodicalIF":3.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78942915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Factor Structure of the Hospital Anxiety Depression Scale Adapted for Korean Preschool Teacher Candidates During the Coronavirus Disease 2019 Pandemic. 医院焦虑抑郁量表的因子结构》,改编自 "2019年冠状病毒病大流行期间韩国学前教育专业应聘教师问卷"。
IF 0.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-09-01 DOI: 10.5152/pcp.2022.22426
Hyelin Jeong, Boram Lee
{"title":"The Factor Structure of the Hospital Anxiety Depression Scale Adapted for Korean Preschool Teacher Candidates During the Coronavirus Disease 2019 Pandemic.","authors":"Hyelin Jeong, Boram Lee","doi":"10.5152/pcp.2022.22426","DOIUrl":"10.5152/pcp.2022.22426","url":null,"abstract":"<p><strong>Background: </strong>The coronavirus disease 2019 pandemic has remarkably challenged preschool teacher candidates, triggering concerns for their psychological well-being and mental health. Valid and reliable instruments to assess elements of mental health are thus required. The self-rating Hospital Anxiety Depression Scale demonstrates promise as an instrument for the identification and quantification of the states of anxiety and depression in non-psychiatric patients. The Hospital Anxiety Depression Scale is widely applied in both clinical and research contexts. However, no psychometric evaluations have been performed for this instrument with non-clinical samples such as preschool teacher candidates in South Korea. This study purposed to establish the factor structure of the Hospital Anxiety Depression Scale and to validate its Korean version and was conducted online with a sample of preschool teacher candidates during the peak of the coronavirus disease 2019 lockdown.</p><p><strong>Methods: </strong>Data were collected from 359 undergraduates currently enrolled in a 4-year early childhood education degree program at a private university in Korea. The sample was randomly split to perform exploratory factor analysis and then confirmatory factor analysis respectively to test competing models hypothesized to reflect the factor structure of the Hospital Anxiety Depression Scale.</p><p><strong>Results: </strong>Supplemental revisions based on confirmatory factor analysis modification indices demonstrated that a correlated 2-factor model with 1 cross-loaded item offered the best fit to the data with adequate internal reliability estimates.</p><p><strong>Conclusion: </strong>Overall, this study confirms the validity and factor structure of the Korean version of the Hospital Anxiety Depression Scale, which is deemed an acceptable instrument that can be used to measure the symptoms of depression and anxiety in Korean preschool teacher candidates.</p>","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"33 1","pages":"196-204"},"PeriodicalIF":0.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84829084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of hydrodynamic herringbone-grooved journal bearings combined with thrust bearings considering thermal effects 考虑热效应的人字槽滑动轴承与推力轴承组合的数值研究
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufab036
Chin-Cheng Wang, Jyun-Ting Lin
{"title":"Numerical study of hydrodynamic herringbone-grooved journal bearings combined with thrust bearings considering thermal effects","authors":"Chin-Cheng Wang, Jyun-Ting Lin","doi":"10.1093/jom/ufab036","DOIUrl":"https://doi.org/10.1093/jom/ufab036","url":null,"abstract":"Hydrodynamic herringbone-grooved journal bearings (HGJBs) are analyzed by solving Navier–Stokes and energy equations. It is well known that the load capacity of hydrodynamic bearings may be affected by high temperatures and low oil viscosity. Therefore, the main objective of this study is to understand the pressure distribution of hydrodynamic HGJBs under different oil viscosity and eccentricity ratios. In this paper, 3 different configurations are studied, namely, a HGJB, a combined HGJB and thrust bearing, and a combined HGJB and grooved thrust bearing. The bearing characteristics, such as load capacity and attitude angle that vary with different eccentricity ratios, are also discussed. The results show that the load capacity of the bearing decreases with increasing temperature. The pressure difference also increases as the eccentricity ratio increases. The high-pressure region is concentrated at the tip of the groove for the HGJB. In addition, the combined HGJB and grooved thrust bearing can be used to stabilize the journal because of the low attitude angle. These findings may help and facilitate the design of hydrodynamic bearings suitable for working in warm and hot environments in the future.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61538896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Experimental and numerical investigations on undulatory motion of a soft-fin-based underwater robot 基于软鳍的水下机器人波动运动的实验与数值研究
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac021
Yu-Chih Lin, Dai Zhang
{"title":"Experimental and numerical investigations on undulatory motion of a soft-fin-based underwater robot","authors":"Yu-Chih Lin, Dai Zhang","doi":"10.1093/jom/ufac021","DOIUrl":"https://doi.org/10.1093/jom/ufac021","url":null,"abstract":"An undulatory fin bionic underwater robot that is able to mimic the undulation motions of the median and/or the paired fin of fish is designed and analyzed. A simplified rays-membrane structure system has been developed in order to save computational cost in finite element analysis. The undulatory motion of the soft fins in the water is experimentally measured by using two cameras and the DLTdv system. The dynamic characteristics of the fin structure and the hydrodynamics of the fluid are analyzed by a fluid-structure interaction model developed by the commercial software ANSYS, and the results are compared to those of the experiment for validation. The fin motion of different fin amplitudes (ray swing angles), membrane dimensions and phase difference of adjacent rays are compared to realize the influence of robot design on the motion. It is found in the results that the displacements of the points on the fin membrane obtained by the finite element analysis have the same trend as those by the experiment; hence, the finite element model is verified. It is indicated by the finite element analysis results that the stress of the points on the fin membrane increases with the amplitude. The maximum velocity in one section plane is largest for the 40 mm width fin. The average stress on the fin with 45° phase difference is larger than that of 90° phase difference. Because of the complexity of the soft fin's material behavior and fluid-structure interaction analysis, the finite element analysis model developed in this study has a significant contribution for the soft-fin-based underwater robot design.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61539938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiscale computational solid mechanics: data and machine learning 多尺度计算固体力学:数据和机器学习
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac037
Tung-Huan Su, Szu-Jui Huang, J. Jean, Chuin-Shan Chen
{"title":"Multiscale computational solid mechanics: data and machine learning","authors":"Tung-Huan Su, Szu-Jui Huang, J. Jean, Chuin-Shan Chen","doi":"10.1093/jom/ufac037","DOIUrl":"https://doi.org/10.1093/jom/ufac037","url":null,"abstract":"Multiscale computational solid mechanics concurrently connects complex material physics and macroscopic structural analysis to accelerate the application of advanced materials in the industry rather than resorting to empirical constitutive models. The rise of data-driven multiscale material modeling opens a major paradigm shift in multiscale computational solid mechanics in the era of material big data. This paper reviews state-of-the-art data-driven methods for multiscale simulation, focusing on data-driven multiscale finite element method (data-driven FE2) and data-driven multiscale finite element-deep material network method (data-driven FE-DMN). Both types of data-driven multiscale methods aim to resolve the past challenge of concurrent multiscale simulation. Numerical examples are designed to demonstrate the effectiveness of data-driven multiscale simulation methods. Future research directions are discussed, including data sampling strategy and data generation technique for the data-driven FE2 method and generalization of data-driven FE-DMN method.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61541162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building structure with elastoplastic bilinear model under multi-dimensional earthquake forces 多维地震作用下的建筑结构弹塑性双线性模型
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac045
H. Hong, Li-Wei Liu, Ya-Po Shiao, Cheng-Jih Chang
{"title":"Building structure with elastoplastic bilinear model under multi-dimensional earthquake forces","authors":"H. Hong, Li-Wei Liu, Ya-Po Shiao, Cheng-Jih Chang","doi":"10.1093/jom/ufac045","DOIUrl":"https://doi.org/10.1093/jom/ufac045","url":null,"abstract":"Developed herein is an analysis procedure based on closed-form solutions to elastoplastic bilinear model of building structures accounted for different stiffnesses and yielding forces in different directions and rotated yield ellipses in different floor levels due to the layout of buildings and the complexity of structural members. The seismic design often considers earthquake forces on multiple floor levels but usually only in a single direction. However, in reality, the direction of the earthquake is not limited to one particular direction. Therefore, studying the influence of a two-way, furthermore multi-dimensional, earthquake on buildings is of great value. To estimate the total seismic demand on inelastic building structures subjected to multi-dimensional loading, this paper aims to find closed-form solution responses to an input rectilinear force path for the elastoplastic bilinear model of Hong and Liu (1999) which already has available closed-form solution responses to an input rectilinear displacement path. In this paper the elastoplastic bilinear model of building structures and Minkowski spacetime are adapted to accommodate such situations as different stiffnesses and yielding forces in different directions and rotated yield ellipses in different floor levels.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61541949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry–wet cycles 干湿循环作用下膨胀土细观结构演化与宏观力学劣化的多尺度研究
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac048
Zihao Zhou, Y. Bai, Yuntao Wu, Yiqian Chen, Zhuang Guo, Weikang Cheng
{"title":"Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry–wet cycles","authors":"Zihao Zhou, Y. Bai, Yuntao Wu, Yiqian Chen, Zhuang Guo, Weikang Cheng","doi":"10.1093/jom/ufac048","DOIUrl":"https://doi.org/10.1093/jom/ufac048","url":null,"abstract":"To explore the influence law of dry–wet cycles on the microstructure of expansive soil and the deterioration effect of macroscopic shear strength, the correlation between the change in the soil internal structure and the deterioration of the mechanical properties is analysed. The expansive soil in the test section of the slope support project in Hanzhong city, Shaanxi Province, China, is selected for sample preparation, three groups of different dry–wet cyclic water content variation paths are defined. The volume damage rate of the soil sample caused by dry–wet cycles is tested, and the microscopic evolution law of soil sample structure was analyzed. On the basis of the conclusion of microscopic analysis, the deterioration effect of macro shear strength of soil samples is further elaborated. The results show that expansive soil is rich in hydrophilic minerals such as illite and montmorillonite. The larger the amplitude of the dry–wet cycle, the more significant the volume change is. With the alternating dry–wet cycle treatment, the microscopic analysis shows that the water migration channels gradually become larger until a new balance is reached. The T2 spectra of the NMR test also show that the overall internal structure develops from stable to unstable. With dry–wet cycles, the unstable change in the soil internal structure leads to the attenuation of the macroscopic shear strength. These micro- and macroscopic research results show that the deterioration effect of drying and wetting on expansive soil cannot be ignored.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61542221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical solutions of a gradient-elastic Kirchhoff plate model on convex and concave geometries using isogeometric analysis 用等几何分析方法求解凸、凹几何梯度弹性Kirchhoff板模型
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac017
Y. Leng, Tianyi Hu, Sthavishtha R. Bhopalam, Héctor Mauricio Serna-Gómez
{"title":"Numerical solutions of a gradient-elastic Kirchhoff plate model on convex and concave geometries using isogeometric analysis","authors":"Y. Leng, Tianyi Hu, Sthavishtha R. Bhopalam, Héctor Mauricio Serna-Gómez","doi":"10.1093/jom/ufac017","DOIUrl":"https://doi.org/10.1093/jom/ufac017","url":null,"abstract":"In this work, we study numerical solutions of a gradient-elastic Kirchhoff plate model on convex and concave geometries. For a convex plate, we first show the well-posedness of the model. Then, we split the sixth-order partial differential equation (PDE) into a system of three second-order PDEs. The solution of the resulting system coincides with that of the original PDE. This is verified with convergence studies performed by solving the sixth-order PDE directly (direct method) using isogeometric analysis (IGA) and the system of second-order PDEs (split method) using both IGA and C0 finite elements. Next, we study a concave pie-shaped plate, which has one re-entrant point. The well-posedness of the model on the concave domain is proved. Numerical solutions obtained using the split method differ significantly from that of the direct method. The split method may even lead to nonphysical solutions. We conclude that for gradient-elastic Kirchhoff plates with concave corners, it is necessary to use the direct method with IGA.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61539835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Characterizing the interfacial fracture energy of stiff islands on stretchable films 可拉伸膜上刚性岛的界面断裂能表征
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac023
J. Lin, J. Tsai
{"title":"Characterizing the interfacial fracture energy of stiff islands on stretchable films","authors":"J. Lin, J. Tsai","doi":"10.1093/jom/ufac023","DOIUrl":"https://doi.org/10.1093/jom/ufac023","url":null,"abstract":"This study characterized the interfacial fracture energy of stiff islands deposited on a thermoplastic polyurethane (TPU) film. The film can deform by >200%. The film was stretched using a designed fixture, and the fracture behaviors of the islands were observed using a microscope. The island–substrate interface debonding lengths associated with different levels of substrate strain were determined in the stretching tests. Because the stretchable film was a nonlinear material, the Ogden model was employed to characterize the nonlinear constitutive relation. Through the tensile tests, the material parameters in the Ogden model were determined using the reduced-gradient optimization method. On the basis of the measured debonding lengths, a finite element model was generated for the nonlinear properties of the film, and the energy release rates at the crack tip were calculated using the J-integral method. The energy release rates, representing the interfacial fracture energy, were calculated on the basis of the arrested crack associated with different crack lengths. Results reveal that the interfacial fracture energy increased from 0.14 to 0.91 kJ/m2 as the debonding length increased. The behavior is related to the rising resistance curve in TPU materials. In addition, the shearing-dominated mode slightly decreased as the debonded length increased in the stretching tests.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61540058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective length of bamboo-like stiffened hollow cylindrical structures 竹状加劲空心圆柱结构的有效长度
IF 1.7 4区 工程技术
Journal of Mechanics Pub Date : 2022-01-01 DOI: 10.1093/jom/ufac019
Ryo Nishiyama, Motohiro Sato
{"title":"Effective length of bamboo-like stiffened hollow cylindrical structures","authors":"Ryo Nishiyama, Motohiro Sato","doi":"10.1093/jom/ufac019","DOIUrl":"https://doi.org/10.1093/jom/ufac019","url":null,"abstract":"Hollow cylindrical structures are susceptible to local buckling because they flatten and significantly reduce their stiffness when they bend. Therefore, many previous studies aimed to improve the strength of pipelines and building structures were conducted. Our research group has focused on bamboo and has theoretically proven that stiffness anisotropy caused by bamboo's unique nodes and vascular bundles enhances the stiffness of cylindrical structures. In this study, to investigate this analytically, we carried out a finite-element analysis and succeeded in deriving a new dimensionless parameter that the stiffening effect of an anisotropic consideration. This result is applicable to a wide range of cylindrical structures, from thin-walled to thick-walled, and it is expected that bamboo-inspired bionic designs will be proposed in the future.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61540135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信