多尺度计算固体力学:数据和机器学习

IF 1.5 4区 工程技术 Q3 MECHANICS
Tung-Huan Su, Szu-Jui Huang, J. Jean, Chuin-Shan Chen
{"title":"多尺度计算固体力学:数据和机器学习","authors":"Tung-Huan Su, Szu-Jui Huang, J. Jean, Chuin-Shan Chen","doi":"10.1093/jom/ufac037","DOIUrl":null,"url":null,"abstract":"Multiscale computational solid mechanics concurrently connects complex material physics and macroscopic structural analysis to accelerate the application of advanced materials in the industry rather than resorting to empirical constitutive models. The rise of data-driven multiscale material modeling opens a major paradigm shift in multiscale computational solid mechanics in the era of material big data. This paper reviews state-of-the-art data-driven methods for multiscale simulation, focusing on data-driven multiscale finite element method (data-driven FE2) and data-driven multiscale finite element-deep material network method (data-driven FE-DMN). Both types of data-driven multiscale methods aim to resolve the past challenge of concurrent multiscale simulation. Numerical examples are designed to demonstrate the effectiveness of data-driven multiscale simulation methods. Future research directions are discussed, including data sampling strategy and data generation technique for the data-driven FE2 method and generalization of data-driven FE-DMN method.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale computational solid mechanics: data and machine learning\",\"authors\":\"Tung-Huan Su, Szu-Jui Huang, J. Jean, Chuin-Shan Chen\",\"doi\":\"10.1093/jom/ufac037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale computational solid mechanics concurrently connects complex material physics and macroscopic structural analysis to accelerate the application of advanced materials in the industry rather than resorting to empirical constitutive models. The rise of data-driven multiscale material modeling opens a major paradigm shift in multiscale computational solid mechanics in the era of material big data. This paper reviews state-of-the-art data-driven methods for multiscale simulation, focusing on data-driven multiscale finite element method (data-driven FE2) and data-driven multiscale finite element-deep material network method (data-driven FE-DMN). Both types of data-driven multiscale methods aim to resolve the past challenge of concurrent multiscale simulation. Numerical examples are designed to demonstrate the effectiveness of data-driven multiscale simulation methods. Future research directions are discussed, including data sampling strategy and data generation technique for the data-driven FE2 method and generalization of data-driven FE-DMN method.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

多尺度计算固体力学将复杂的材料物理和宏观结构分析结合起来,加速了先进材料在工业中的应用,而不是诉诸于经验本构模型。数据驱动的多尺度材料建模的兴起开启了材料大数据时代多尺度计算固体力学的重大范式转变。本文综述了目前多尺度模拟的数据驱动方法,重点介绍了数据驱动多尺度有限元法(data-driven FE2)和数据驱动多尺度有限元-深层材料网络法(data-driven FE-DMN)。这两种数据驱动的多尺度方法都是为了解决过去并行多尺度仿真的难题。通过数值算例验证了数据驱动多尺度仿真方法的有效性。讨论了未来的研究方向,包括数据驱动FE2方法的数据采样策略和数据生成技术,以及数据驱动FE-DMN方法的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale computational solid mechanics: data and machine learning
Multiscale computational solid mechanics concurrently connects complex material physics and macroscopic structural analysis to accelerate the application of advanced materials in the industry rather than resorting to empirical constitutive models. The rise of data-driven multiscale material modeling opens a major paradigm shift in multiscale computational solid mechanics in the era of material big data. This paper reviews state-of-the-art data-driven methods for multiscale simulation, focusing on data-driven multiscale finite element method (data-driven FE2) and data-driven multiscale finite element-deep material network method (data-driven FE-DMN). Both types of data-driven multiscale methods aim to resolve the past challenge of concurrent multiscale simulation. Numerical examples are designed to demonstrate the effectiveness of data-driven multiscale simulation methods. Future research directions are discussed, including data sampling strategy and data generation technique for the data-driven FE2 method and generalization of data-driven FE-DMN method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信