{"title":"干湿循环作用下膨胀土细观结构演化与宏观力学劣化的多尺度研究","authors":"Zihao Zhou, Y. Bai, Yuntao Wu, Yiqian Chen, Zhuang Guo, Weikang Cheng","doi":"10.1093/jom/ufac048","DOIUrl":null,"url":null,"abstract":"To explore the influence law of dry–wet cycles on the microstructure of expansive soil and the deterioration effect of macroscopic shear strength, the correlation between the change in the soil internal structure and the deterioration of the mechanical properties is analysed. The expansive soil in the test section of the slope support project in Hanzhong city, Shaanxi Province, China, is selected for sample preparation, three groups of different dry–wet cyclic water content variation paths are defined. The volume damage rate of the soil sample caused by dry–wet cycles is tested, and the microscopic evolution law of soil sample structure was analyzed. On the basis of the conclusion of microscopic analysis, the deterioration effect of macro shear strength of soil samples is further elaborated. The results show that expansive soil is rich in hydrophilic minerals such as illite and montmorillonite. The larger the amplitude of the dry–wet cycle, the more significant the volume change is. With the alternating dry–wet cycle treatment, the microscopic analysis shows that the water migration channels gradually become larger until a new balance is reached. The T2 spectra of the NMR test also show that the overall internal structure develops from stable to unstable. With dry–wet cycles, the unstable change in the soil internal structure leads to the attenuation of the macroscopic shear strength. These micro- and macroscopic research results show that the deterioration effect of drying and wetting on expansive soil cannot be ignored.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry–wet cycles\",\"authors\":\"Zihao Zhou, Y. Bai, Yuntao Wu, Yiqian Chen, Zhuang Guo, Weikang Cheng\",\"doi\":\"10.1093/jom/ufac048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the influence law of dry–wet cycles on the microstructure of expansive soil and the deterioration effect of macroscopic shear strength, the correlation between the change in the soil internal structure and the deterioration of the mechanical properties is analysed. The expansive soil in the test section of the slope support project in Hanzhong city, Shaanxi Province, China, is selected for sample preparation, three groups of different dry–wet cyclic water content variation paths are defined. The volume damage rate of the soil sample caused by dry–wet cycles is tested, and the microscopic evolution law of soil sample structure was analyzed. On the basis of the conclusion of microscopic analysis, the deterioration effect of macro shear strength of soil samples is further elaborated. The results show that expansive soil is rich in hydrophilic minerals such as illite and montmorillonite. The larger the amplitude of the dry–wet cycle, the more significant the volume change is. With the alternating dry–wet cycle treatment, the microscopic analysis shows that the water migration channels gradually become larger until a new balance is reached. The T2 spectra of the NMR test also show that the overall internal structure develops from stable to unstable. With dry–wet cycles, the unstable change in the soil internal structure leads to the attenuation of the macroscopic shear strength. These micro- and macroscopic research results show that the deterioration effect of drying and wetting on expansive soil cannot be ignored.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufac048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry–wet cycles
To explore the influence law of dry–wet cycles on the microstructure of expansive soil and the deterioration effect of macroscopic shear strength, the correlation between the change in the soil internal structure and the deterioration of the mechanical properties is analysed. The expansive soil in the test section of the slope support project in Hanzhong city, Shaanxi Province, China, is selected for sample preparation, three groups of different dry–wet cyclic water content variation paths are defined. The volume damage rate of the soil sample caused by dry–wet cycles is tested, and the microscopic evolution law of soil sample structure was analyzed. On the basis of the conclusion of microscopic analysis, the deterioration effect of macro shear strength of soil samples is further elaborated. The results show that expansive soil is rich in hydrophilic minerals such as illite and montmorillonite. The larger the amplitude of the dry–wet cycle, the more significant the volume change is. With the alternating dry–wet cycle treatment, the microscopic analysis shows that the water migration channels gradually become larger until a new balance is reached. The T2 spectra of the NMR test also show that the overall internal structure develops from stable to unstable. With dry–wet cycles, the unstable change in the soil internal structure leads to the attenuation of the macroscopic shear strength. These micro- and macroscopic research results show that the deterioration effect of drying and wetting on expansive soil cannot be ignored.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.