{"title":"考虑热效应的人字槽滑动轴承与推力轴承组合的数值研究","authors":"Chin-Cheng Wang, Jyun-Ting Lin","doi":"10.1093/jom/ufab036","DOIUrl":null,"url":null,"abstract":"Hydrodynamic herringbone-grooved journal bearings (HGJBs) are analyzed by solving Navier–Stokes and energy equations. It is well known that the load capacity of hydrodynamic bearings may be affected by high temperatures and low oil viscosity. Therefore, the main objective of this study is to understand the pressure distribution of hydrodynamic HGJBs under different oil viscosity and eccentricity ratios. In this paper, 3 different configurations are studied, namely, a HGJB, a combined HGJB and thrust bearing, and a combined HGJB and grooved thrust bearing. The bearing characteristics, such as load capacity and attitude angle that vary with different eccentricity ratios, are also discussed. The results show that the load capacity of the bearing decreases with increasing temperature. The pressure difference also increases as the eccentricity ratio increases. The high-pressure region is concentrated at the tip of the groove for the HGJB. In addition, the combined HGJB and grooved thrust bearing can be used to stabilize the journal because of the low attitude angle. These findings may help and facilitate the design of hydrodynamic bearings suitable for working in warm and hot environments in the future.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical study of hydrodynamic herringbone-grooved journal bearings combined with thrust bearings considering thermal effects\",\"authors\":\"Chin-Cheng Wang, Jyun-Ting Lin\",\"doi\":\"10.1093/jom/ufab036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrodynamic herringbone-grooved journal bearings (HGJBs) are analyzed by solving Navier–Stokes and energy equations. It is well known that the load capacity of hydrodynamic bearings may be affected by high temperatures and low oil viscosity. Therefore, the main objective of this study is to understand the pressure distribution of hydrodynamic HGJBs under different oil viscosity and eccentricity ratios. In this paper, 3 different configurations are studied, namely, a HGJB, a combined HGJB and thrust bearing, and a combined HGJB and grooved thrust bearing. The bearing characteristics, such as load capacity and attitude angle that vary with different eccentricity ratios, are also discussed. The results show that the load capacity of the bearing decreases with increasing temperature. The pressure difference also increases as the eccentricity ratio increases. The high-pressure region is concentrated at the tip of the groove for the HGJB. In addition, the combined HGJB and grooved thrust bearing can be used to stabilize the journal because of the low attitude angle. These findings may help and facilitate the design of hydrodynamic bearings suitable for working in warm and hot environments in the future.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufab036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufab036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical study of hydrodynamic herringbone-grooved journal bearings combined with thrust bearings considering thermal effects
Hydrodynamic herringbone-grooved journal bearings (HGJBs) are analyzed by solving Navier–Stokes and energy equations. It is well known that the load capacity of hydrodynamic bearings may be affected by high temperatures and low oil viscosity. Therefore, the main objective of this study is to understand the pressure distribution of hydrodynamic HGJBs under different oil viscosity and eccentricity ratios. In this paper, 3 different configurations are studied, namely, a HGJB, a combined HGJB and thrust bearing, and a combined HGJB and grooved thrust bearing. The bearing characteristics, such as load capacity and attitude angle that vary with different eccentricity ratios, are also discussed. The results show that the load capacity of the bearing decreases with increasing temperature. The pressure difference also increases as the eccentricity ratio increases. The high-pressure region is concentrated at the tip of the groove for the HGJB. In addition, the combined HGJB and grooved thrust bearing can be used to stabilize the journal because of the low attitude angle. These findings may help and facilitate the design of hydrodynamic bearings suitable for working in warm and hot environments in the future.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.