The International Journal of Robotics Research最新文献

筛选
英文 中文
AstroSLAM: Autonomous monocular navigation in the vicinity of a celestial small body—Theory and experiments AstroSLAM:小天体附近的自主单目导航--理论与实验
The International Journal of Robotics Research Pub Date : 2024-06-21 DOI: 10.1177/02783649241234367
Mehregan Dor, Travis Driver, Kenneth Getzandanner, Panagiotis Tsiotras
{"title":"AstroSLAM: Autonomous monocular navigation in the vicinity of a celestial small body—Theory and experiments","authors":"Mehregan Dor, Travis Driver, Kenneth Getzandanner, Panagiotis Tsiotras","doi":"10.1177/02783649241234367","DOIUrl":"https://doi.org/10.1177/02783649241234367","url":null,"abstract":"We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown celestial target small body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph, facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we achieve improved performance over a baseline SLAM solution and outperform state-of-the-art methods predicated on pre-integrated inertial measurement unit factors. We incorporate orbital motion constraints into the factor graph by devising a novel relative dynamics—RelDyn—factor, which links the relative pose of the spacecraft to the problem of predicting trajectories stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate AstroSLAM’s performance and compare against the state-of-the-art methods using both real legacy mission imagery and trajectory data courtesy of NASA’s Planetary Data System, as well as real in-lab imagery data produced on a 3 degree-of-freedom spacecraft simulator test-bed.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavior-predefined adaptive control for heterogeneous continuum robots 异构连续机器人的行为预定义自适应控制
The International Journal of Robotics Research Pub Date : 2024-06-21 DOI: 10.1177/02783649241259138
Ning Tan, Peng Yu, Xin Wang, Kai Huang
{"title":"Behavior-predefined adaptive control for heterogeneous continuum robots","authors":"Ning Tan, Peng Yu, Xin Wang, Kai Huang","doi":"10.1177/02783649241259138","DOIUrl":"https://doi.org/10.1177/02783649241259138","url":null,"abstract":"Continuum robots have great application value and broad prospects in various fields due to their dexterity and compliance. To fully exploit their advantages, it is crucial to develop an effective, accurate and robust control system for them. However, research on continuum robot control is still in its infancy and there are many problems remaining unsolved in this field. In particular, this paper focuses on the task-space behavior and the generic control of heterogeneous continuum robots. First, a controller is proposed to achieve the kinematic motion control and visual servoing of continuum robots with predefined task-space behavior. The predefined behavior is twofold: prescribed task-space error and predefined convergence time. Then, the proposed controller is integrated with a velocity-level kinematic mapping estimator to obtain a model-free control system, which is applicable to heterogeneous continuum robots. Furthermore, a re-adjustable performance function is proposed to ensure the effectiveness and robustness of the proposed control system in the presence of external disturbance. Finally, extensive simulations and experiments are performed based on heterogeneous continuum robots, including the cable-driven continuum robot, the parallel continuum robot, the concentric-tube robot, the flexible endoscope, and the pneumatic continuum robot. Our results demonstrate that the task-space error of heterogeneous continuum robots complies with the prescribed boundaries and converges to steady state in predefined time, which reveals the efficacy of the proposed control method.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"2018 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robot control based on motor primitives: A comparison of two approaches 基于电机基元的机器人控制:两种方法的比较
The International Journal of Robotics Research Pub Date : 2024-06-21 DOI: 10.1177/02783649241258782
Moses C. Nah, Johannes Lachner, Neville Hogan
{"title":"Robot control based on motor primitives: A comparison of two approaches","authors":"Moses C. Nah, Johannes Lachner, Neville Hogan","doi":"10.1177/02783649241258782","DOIUrl":"https://doi.org/10.1177/02783649241258782","url":null,"abstract":"Motor primitives are fundamental building blocks of a controller which enable dynamic robot behavior with minimal high-level intervention. By treating motor primitives as basic “modules,” different modules can be sequenced or superimposed to generate a rich repertoire of motor behavior. In robotics, two distinct approaches have been proposed: Dynamic Movement Primitives (DMPs) and Elementary Dynamic Actions (EDAs). While both approaches instantiate similar ideas, significant differences also exist. This paper attempts to clarify the distinction and provide a unifying view by delineating the similarities and differences between DMPs and EDAs. We provide nine robot control examples, including sequencing or superimposing movements, managing kinematic redundancy and singularity, control of both position and orientation of the robot’s end-effector, obstacle avoidance, and managing physical interaction. We show that the two approaches clearly diverge in their implementation. We also provide a real-robot demonstration to show how DMPs and EDAs can be combined to get the best of both approaches. With this detailed comparison, we enable researchers to make informed decisions to select the most suitable approach for specific robot tasks and applications.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal potential shaping on SE(3) via neural ordinary differential equations on Lie groups 通过李群上的神经常微分方程实现 SE(3) 上的最佳势整形
The International Journal of Robotics Research Pub Date : 2024-06-14 DOI: 10.1177/02783649241256044
Yannik P. Wotte, Federico Califano, Stefano Stramigioli
{"title":"Optimal potential shaping on SE(3) via neural ordinary differential equations on Lie groups","authors":"Yannik P. Wotte, Federico Califano, Stefano Stramigioli","doi":"10.1177/02783649241256044","DOIUrl":"https://doi.org/10.1177/02783649241256044","url":null,"abstract":"This work presents a novel approach for the optimization of dynamic systems on finite-dimensional Lie groups. We rephrase dynamic systems as so-called neural ordinary differential equations (neural ODEs), and formulate the optimization problem on Lie groups. A gradient descent optimization algorithm is presented to tackle the optimization numerically. Our algorithm is scalable, and applicable to any finite-dimensional Lie group, including matrix Lie groups. By representing the system at the Lie algebra level, we reduce the computational cost of the gradient computation. In an extensive example, optimal potential energy shaping for control of a rigid body is treated. The optimal control problem is phrased as an optimization of a neural ODE on the Lie group SE(3), and the controller is iteratively optimized. The final controller is validated on a state-regulation task.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"4 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141341068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASIMO: Agent-centric scene representation in multi-object manipulation ASIMO:多物体操纵中以代理为中心的场景表示法
The International Journal of Robotics Research Pub Date : 2024-06-10 DOI: 10.1177/02783649241257537
Cheol-Hui Min, Young Min Kim
{"title":"ASIMO: Agent-centric scene representation in multi-object manipulation","authors":"Cheol-Hui Min, Young Min Kim","doi":"10.1177/02783649241257537","DOIUrl":"https://doi.org/10.1177/02783649241257537","url":null,"abstract":"Vision-based reinforcement learning (RL) is a generalizable way to control an agent because it is agnostic of specific hardware configurations. As visual observations are highly entangled, attempts for vision-based RL rely on scene representation that discerns individual entities and establishes intuitive physics to constitute the world model. However, most existing works on scene representation learning cannot successfully be deployed to train an RL agent, as they are often highly unstable and fail to sustain for a long enough temporal horizon. We propose ASIMO, a fully unsupervised scene decomposition to perform interaction-rich tasks with a vision-based RL agent. ASIMO decomposes agent-object interaction videos of episodic-length into the agent, objects, and background, predicting their long-term interactions. Further, we explicitly model possible occlusion in the image observations and stably track individual objects. Then, we can correctly deduce the updated positions of individual entities in response to the agent action, only from partial visual observation. Based on the stable entity-wise decomposition and temporal prediction, we formulate a hierarchical framework to train the RL agent that focuses on the context around the object of interest. We demonstrate that our formulation for scene representation can be universally deployed to train different configurations of agents and accomplish several tasks that involve pushing, arranging, and placing multiple rigid objects.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Set-valued rigid-body dynamics for simultaneous, inelastic, frictional impacts 非弹性摩擦同时撞击的集值刚体动力学
The International Journal of Robotics Research Pub Date : 2024-05-25 DOI: 10.1177/02783649241236860
Mathew Halm, Michael Posa
{"title":"Set-valued rigid-body dynamics for simultaneous, inelastic, frictional impacts","authors":"Mathew Halm, Michael Posa","doi":"10.1177/02783649241236860","DOIUrl":"https://doi.org/10.1177/02783649241236860","url":null,"abstract":"Robotic manipulation and locomotion often entail nearly-simultaneous collisions—such as heel and toe strikes during a foot step—with outcomes that are extremely sensitive to the order in which impacts occur. Robotic simulators and state estimation commonly lack the fidelity and accuracy to predict this ordering, and instead pick one with a heuristic. This discrepancy degrades performance when model-based controllers and policies learned in simulation are placed on a real robot. We reconcile this issue with a set-valued rigid-body model which generates a broad set of outcomes to simultaneous frictional impacts with any impact ordering. We first extend Routh’s impact model to multiple impacts by reformulating it as a differential inclusion (DI), and show that any solution will resolve all impacts in finite time. By considering time as a state, we embed this model into another DI which captures the continuous-time evolution of rigid-body dynamics, and guarantee existence of solutions. We finally cast simulation of simultaneous impacts as a linear complementarity problem (LCP), and develop an algorithm for tight approximation of the post-impact velocity set with probabilistic guarantees. We demonstrate our approach on several examples drawn from manipulation and legged locomotion, and compare the predictions to other models of rigid and compliant collisions.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiral complete coverage path planning based on conformal slit mapping in multi-connected domains 基于多连接域中保形狭缝映射的螺旋完全覆盖路径规划
The International Journal of Robotics Research Pub Date : 2024-05-10 DOI: 10.1177/02783649241251385
Changqing Shen, Sihao Mao, Bingzhou Xu, Ziwei Wang, Xiaojian Zhang, Sijie Yan, Han Ding
{"title":"Spiral complete coverage path planning based on conformal slit mapping in multi-connected domains","authors":"Changqing Shen, Sihao Mao, Bingzhou Xu, Ziwei Wang, Xiaojian Zhang, Sijie Yan, Han Ding","doi":"10.1177/02783649241251385","DOIUrl":"https://doi.org/10.1177/02783649241251385","url":null,"abstract":"The generation of smoother and shorter spiral complete coverage paths in multi-connected domains is a crucial research topic in path planning for robotic cavity machining and other related fields. Traditional methods for spiral path planning in multi-connected domains typically incorporate a subregion division procedure that leads to excessive subregion bridging, requiring longer, more sharply turning, and unevenly spaced spirals to achieve complete coverage. To address this issue, this paper proposes a novel spiral complete coverage path planning method using conformal slit mapping. It takes advantage of the fact that conformal slit mapping can transform multi-connected domains into regular disks or annuluses without the need for subregion division. Firstly, a slit mapping calculation technique is proposed for segmented cubic spline boundaries with corners. Secondly, a spiral path spacing control method is developed based on the maximum inscribed circle radius between adjacent conformal slit mapping iso-parameters. Thirdly, the spiral coverage path is derived by offsetting iso-parameters. Numerical experiments indicate that our method shares a comparable order-of-magnitude in computation time with the traditional PDE-based spiral complete coverage path method, but it excels in optimizing total path length, smoothness, and spacing consistency. Finally, we performed experiments on cavity milling and dry runs to compare the new method with the traditional PDE-based method in terms of machining duration and steering impact, respectively. The comparison reveals that, with both algorithms achieving complete coverage, the new algorithm reduces machining time and steering impact by 12.34% and 22.78%, respectively, compared with the traditional PDE-based method.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planning for heterogeneous teams of robots with temporal logic, capability, and resource constraints 为具有时间逻辑、能力和资源限制的异构机器人团队制定计划
The International Journal of Robotics Research Pub Date : 2024-04-29 DOI: 10.1177/02783649241247285
Gustavo A. Cardona, Cristian-Ioan Vasile
{"title":"Planning for heterogeneous teams of robots with temporal logic, capability, and resource constraints","authors":"Gustavo A. Cardona, Cristian-Ioan Vasile","doi":"10.1177/02783649241247285","DOIUrl":"https://doi.org/10.1177/02783649241247285","url":null,"abstract":"This paper presents a comprehensive approach for planning for teams of heterogeneous robots with different capabilities and the transportation of resources. We use Capability Temporal Logic (CaTL), a formal language that helps express tasks involving robots with multiple capabilities with spatial, temporal, and logical constraints. We extend CaTL to also capture resource constraints, where resources can be divisible and indivisible, for instance, sand and bricks, respectively. Robots transport resources using various storage types, such as uniform (shared storage among resources) and compartmental (individual storage per resource). Robots’ resource transportation capacity is defined based on resource type and robot class. Robot and resource dynamics and the CaTL mission are jointly encoded in a Mixed Integer Linear Programming (MILP), which maximizes disjoint robot and resource robustness while minimizing spurious movement of both. We propose a multi-robustness approach for Multi-Class Signal Temporal Logic (mcSTL), allowing for generalized quantitative semantics across multiple predicate classes. Thus, we compute availability robustness scores for robots and resources separately. Finally, we conduct multiple experiments demonstrating functionality and time performance by varying resources and storage types.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive optimal motion planning to anywhere in the presence of moving obstacles 在有移动障碍物的情况下,对任何地方进行反应式优化运动规划
The International Journal of Robotics Research Pub Date : 2024-04-23 DOI: 10.1177/02783649241245729
Panagiotis Rousseas, Charalampos P. Bechlioulis, Kostas Kyriakopoulos
{"title":"Reactive optimal motion planning to anywhere in the presence of moving obstacles","authors":"Panagiotis Rousseas, Charalampos P. Bechlioulis, Kostas Kyriakopoulos","doi":"10.1177/02783649241245729","DOIUrl":"https://doi.org/10.1177/02783649241245729","url":null,"abstract":"In this paper, a novel optimal motion planning framework that enables navigating optimally from any initial, to any final position within confined workspaces with convex, moving obstacles is presented. Our method outputs a smooth velocity vector field, which is then employed as a reference controller in order to sub-optimally avoid moving obstacles. The proposed approach leverages and extends desirable properties of reactive methods in order to provide a provably convergent and safe solution. Our algorithm is evaluated with both static and moving obstacles in synthetic environments and is compared against a variety of existing methods. The efficacy and applicability of the proposed scheme is finally validated in a high-fidelity simulation environment.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"30 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimotion visual odometry 多运动视觉里程测量
The International Journal of Robotics Research Pub Date : 2024-04-18 DOI: 10.1177/02783649241229095
Kevin M. Judd, Jonathan D. Gammell
{"title":"Multimotion visual odometry","authors":"Kevin M. Judd, Jonathan D. Gammell","doi":"10.1177/02783649241229095","DOIUrl":"https://doi.org/10.1177/02783649241229095","url":null,"abstract":"Visual motion estimation is a well-studied challenge in autonomous navigation. Recent work has focused on addressing multimotion estimation in highly dynamic environments. These environments not only comprise multiple, complex motions but also tend to exhibit significant occlusion. Estimating third-party motions simultaneously with the sensor egomotion is difficult because an object’s observed motion consists of both its true motion and the sensor motion. Most previous works in multimotion estimation simplify this problem by relying on appearance-based object detection or application-specific motion constraints. These approaches are effective in specific applications and environments but do not generalize well to the full multimotion estimation problem (MEP). This paper presents Multimotion Visual Odometry (MVO), a multimotion estimation pipeline that estimates the full SE(3) trajectory of every motion in the scene, including the sensor egomotion, without relying on appearance-based information. MVO extends the traditional visual odometry (VO) pipeline with multimotion segmentation and tracking techniques. It uses physically founded motion priors to extrapolate motions through temporary occlusions and identify the reappearance of motions through motion closure. Evaluations on real-world data from the Oxford Multimotion Dataset (OMD) and the KITTI Vision Benchmark Suite demonstrate that MVO achieves good estimation accuracy compared to similar approaches and is applicable to a variety of multimotion estimation challenges.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信