基于电机基元的机器人控制:两种方法的比较

Moses C. Nah, Johannes Lachner, Neville Hogan
{"title":"基于电机基元的机器人控制:两种方法的比较","authors":"Moses C. Nah, Johannes Lachner, Neville Hogan","doi":"10.1177/02783649241258782","DOIUrl":null,"url":null,"abstract":"Motor primitives are fundamental building blocks of a controller which enable dynamic robot behavior with minimal high-level intervention. By treating motor primitives as basic “modules,” different modules can be sequenced or superimposed to generate a rich repertoire of motor behavior. In robotics, two distinct approaches have been proposed: Dynamic Movement Primitives (DMPs) and Elementary Dynamic Actions (EDAs). While both approaches instantiate similar ideas, significant differences also exist. This paper attempts to clarify the distinction and provide a unifying view by delineating the similarities and differences between DMPs and EDAs. We provide nine robot control examples, including sequencing or superimposing movements, managing kinematic redundancy and singularity, control of both position and orientation of the robot’s end-effector, obstacle avoidance, and managing physical interaction. We show that the two approaches clearly diverge in their implementation. We also provide a real-robot demonstration to show how DMPs and EDAs can be combined to get the best of both approaches. With this detailed comparison, we enable researchers to make informed decisions to select the most suitable approach for specific robot tasks and applications.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robot control based on motor primitives: A comparison of two approaches\",\"authors\":\"Moses C. Nah, Johannes Lachner, Neville Hogan\",\"doi\":\"10.1177/02783649241258782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor primitives are fundamental building blocks of a controller which enable dynamic robot behavior with minimal high-level intervention. By treating motor primitives as basic “modules,” different modules can be sequenced or superimposed to generate a rich repertoire of motor behavior. In robotics, two distinct approaches have been proposed: Dynamic Movement Primitives (DMPs) and Elementary Dynamic Actions (EDAs). While both approaches instantiate similar ideas, significant differences also exist. This paper attempts to clarify the distinction and provide a unifying view by delineating the similarities and differences between DMPs and EDAs. We provide nine robot control examples, including sequencing or superimposing movements, managing kinematic redundancy and singularity, control of both position and orientation of the robot’s end-effector, obstacle avoidance, and managing physical interaction. We show that the two approaches clearly diverge in their implementation. We also provide a real-robot demonstration to show how DMPs and EDAs can be combined to get the best of both approaches. With this detailed comparison, we enable researchers to make informed decisions to select the most suitable approach for specific robot tasks and applications.\",\"PeriodicalId\":501362,\"journal\":{\"name\":\"The International Journal of Robotics Research\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649241258782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241258782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电机基元是控制器的基本构件,只需最少的高级干预即可实现机器人的动态行为。将运动基元视为基本 "模块",不同的模块可以排序或叠加,从而产生丰富的运动行为。在机器人学中,已经提出了两种不同的方法:动态运动基元 (DMP) 和基本动态动作 (EDA)。虽然这两种方法体现了相似的理念,但也存在显著差异。本文试图澄清两者之间的区别,并通过划分 DMP 和 EDA 之间的异同提供一个统一的观点。我们提供了九个机器人控制实例,包括运动排序或叠加、管理运动学冗余和奇异性、控制机器人末端执行器的位置和方向、避开障碍物以及管理物理交互。我们表明,这两种方法在实施过程中存在明显差异。我们还提供了一个真实机器人演示,展示如何将 DMP 和 EDA 结合起来,以获得两种方法的最佳效果。通过这种详细的比较,我们使研究人员能够做出明智的决定,为特定的机器人任务和应用选择最合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot control based on motor primitives: A comparison of two approaches
Motor primitives are fundamental building blocks of a controller which enable dynamic robot behavior with minimal high-level intervention. By treating motor primitives as basic “modules,” different modules can be sequenced or superimposed to generate a rich repertoire of motor behavior. In robotics, two distinct approaches have been proposed: Dynamic Movement Primitives (DMPs) and Elementary Dynamic Actions (EDAs). While both approaches instantiate similar ideas, significant differences also exist. This paper attempts to clarify the distinction and provide a unifying view by delineating the similarities and differences between DMPs and EDAs. We provide nine robot control examples, including sequencing or superimposing movements, managing kinematic redundancy and singularity, control of both position and orientation of the robot’s end-effector, obstacle avoidance, and managing physical interaction. We show that the two approaches clearly diverge in their implementation. We also provide a real-robot demonstration to show how DMPs and EDAs can be combined to get the best of both approaches. With this detailed comparison, we enable researchers to make informed decisions to select the most suitable approach for specific robot tasks and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信