Fractals最新文献

筛选
英文 中文
Analyzing the occurrence of bifurcation and chaotic behaviors in multi-fractional order stochastic Ginzburg-Landau equations 分析多分数阶随机金兹堡-朗道方程中分岔和混沌行为的发生
Fractals Pub Date : 2024-07-03 DOI: 10.1142/s0218348x24501056
Yiqun Sun, Jianming Qi, Qinghua Cui
{"title":"Analyzing the occurrence of bifurcation and chaotic behaviors in multi-fractional order stochastic Ginzburg-Landau equations","authors":"Yiqun Sun, Jianming Qi, Qinghua Cui","doi":"10.1142/s0218348x24501056","DOIUrl":"https://doi.org/10.1142/s0218348x24501056","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"81 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Average Distance of the Self-Similar Coral Fractal 自相似珊瑚分形的加权平均距离
Fractals Pub Date : 2024-07-03 DOI: 10.1142/s0218348x2450107x
Yuanyuan Li, Lihui Tu
{"title":"Weighted Average Distance of the Self-Similar Coral Fractal","authors":"Yuanyuan Li, Lihui Tu","doi":"10.1142/s0218348x2450107x","DOIUrl":"https://doi.org/10.1142/s0218348x2450107x","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"17 S2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal evolution of permeability for porous rock during mineral dissolution and precipitation process based on fractal theory 基于分形理论的矿物溶解和沉淀过程中多孔岩石渗透率的时间演变
Fractals Pub Date : 2024-07-03 DOI: 10.1142/s0218348x24501020
Aimin Chen, Tongjun Miao, Xiaomeng Shen, Boming Yu
{"title":"Temporal evolution of permeability for porous rock during mineral dissolution and precipitation process based on fractal theory","authors":"Aimin Chen, Tongjun Miao, Xiaomeng Shen, Boming Yu","doi":"10.1142/s0218348x24501020","DOIUrl":"https://doi.org/10.1142/s0218348x24501020","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"40 S184","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141683200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the fractal dimension of a fractal surface with one single unbounded variation point 论有一个无界变化点的分形曲面的分形维度
Fractals Pub Date : 2024-07-03 DOI: 10.1142/s0218348x24501044
J. R. Guo, Y. S. Liang
{"title":"On the fractal dimension of a fractal surface with one single unbounded variation point","authors":"J. R. Guo, Y. S. Liang","doi":"10.1142/s0218348x24501044","DOIUrl":"https://doi.org/10.1142/s0218348x24501044","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141683439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON MURRAY LAW FOR OPTIMAL BRANCHING RATIO 关于最佳分支率的穆雷定律
Fractals Pub Date : 2024-07-02 DOI: 10.1142/s0218348x24500920
Yu-Ting Zuo
{"title":"ON MURRAY LAW FOR OPTIMAL BRANCHING RATIO","authors":"Yu-Ting Zuo","doi":"10.1142/s0218348x24500920","DOIUrl":"https://doi.org/10.1142/s0218348x24500920","url":null,"abstract":"Tree-like branching networks are widespread in nature and have found wide applications in engineering, where Murray’s law is generally adopted to optimally design tree-like systems, but it may become invalid in some cases. Here we give an energy approach to the analysis of the law and re-find Li–Yu’s law for the optimal ratio of the square root of 2 with a suitable constraint. When the cross-section of each branch is considered as a fractal pattern, a modified Murray’s law is obtained, which includes the original Murray’s law for a Peano-like pore and Li–Yu’s law for cylindrical branches, furthermore a useful relationship between the diameter and length of each hierarchy is obtained, which is contrary to the tree-like fractal patterns, and the new hierarchy is named as “fractal Murray tree”, which also has many potential applications in science, engineering, social science and economics. This paper is intended to serve as a foundation for further research into the fractal Murray tree and its applications in various fields.","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"54 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-Domain Solutions to the Fractal (3+1)-Dimensional Jimbo-Miwa Equation 分形 (3+1)-Dimensional Jimbo-Miwa 公式的半域解决方案
Fractals Pub Date : 2024-06-06 DOI: 10.1142/s0218348x24400425
Peng Xu, Huan Huang, Hui Liu
{"title":"Semi-Domain Solutions to the Fractal (3+1)-Dimensional Jimbo-Miwa Equation","authors":"Peng Xu, Huan Huang, Hui Liu","doi":"10.1142/s0218348x24400425","DOIUrl":"https://doi.org/10.1142/s0218348x24400425","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"29 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Virus Spread Analysis in Computer Networks with Atangana-Baleanu Fractional Derivative Models 利用阿坦加纳-巴莱阿努分数衍生模型研究计算机网络中的病毒传播分析
Fractals Pub Date : 2024-06-06 DOI: 10.1142/s0218348x24400437
Imtiaz Ahmad, Asmidar Abu Bakar, Hijaz Ahmad, Aziz Khan, Th. Abdeljawad
{"title":"Investigating Virus Spread Analysis in Computer Networks with Atangana-Baleanu Fractional Derivative Models","authors":"Imtiaz Ahmad, Asmidar Abu Bakar, Hijaz Ahmad, Aziz Khan, Th. Abdeljawad","doi":"10.1142/s0218348x24400437","DOIUrl":"https://doi.org/10.1142/s0218348x24400437","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"65 s297","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOME FRACTALS RELATED TO PARTIAL MAXIMAL DIGITS IN LÜROTH EXPANSION 与吕洛特展开中部分最大位数有关的一些分形
Fractals Pub Date : 2024-06-04 DOI: 10.1142/s0218348x24500786
JIANG DENG, JIHUA MA, KUNKUN SONG, ZHONGQUAN XIE
{"title":"SOME FRACTALS RELATED TO PARTIAL MAXIMAL DIGITS IN LÜROTH EXPANSION","authors":"JIANG DENG, JIHUA MA, KUNKUN SONG, ZHONGQUAN XIE","doi":"10.1142/s0218348x24500786","DOIUrl":"https://doi.org/10.1142/s0218348x24500786","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mo stretchy=\"false\">[</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">]</mo></math></span><span></span> be the Lüroth expansion of <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>x</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo></math></span><span></span>, and let <span><math altimg=\"eq-00003.gif\" display=\"inline\"><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>max</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span>. It is shown that for any <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>α</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, the level set <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\"><mrow><mstyle><mfenced close=\"\" open=\"{\" separators=\"\"><mrow></mrow></mfenced></mstyle><mi>x</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mfrac><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>log</mo><mo>log</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mi>α</mi><mstyle><mfenced close=\"\" open=\"}\" separators=\"\"><mrow></mrow></mfenced></mstyle></mrow></math></span><span></span></disp-formula-group> has Hausdorff dimension one. Certain sets of points for which the sequence <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> grows more rapidly are also investigated.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on quantification of rock fracture network to promote shale gas development 关于量化岩石裂缝网络以促进页岩气开发的研究
Fractals Pub Date : 2024-06-04 DOI: 10.1142/s0218348x24400310
Lili Sui, Xinyu Ma, Jiamin Chen, Xiaodong Wang, Fangping Niu, Jiaqi Tao
{"title":"Study on quantification of rock fracture network to promote shale gas development","authors":"Lili Sui, Xinyu Ma, Jiamin Chen, Xiaodong Wang, Fangping Niu, Jiaqi Tao","doi":"10.1142/s0218348x24400310","DOIUrl":"https://doi.org/10.1142/s0218348x24400310","url":null,"abstract":"","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"67 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NEW OPTICAL SOLITONS FOR NONLINEAR FRACTIONAL SCHRÖDINGER EQUATION VIA DIFFERENT ANALYTICAL APPROACHES 通过不同分析方法获得非线性分数薛定谔方程的新光学孤子
Fractals Pub Date : 2024-05-30 DOI: 10.1142/s0218348x24500774
KANG-LE WANG
{"title":"NEW OPTICAL SOLITONS FOR NONLINEAR FRACTIONAL SCHRÖDINGER EQUATION VIA DIFFERENT ANALYTICAL APPROACHES","authors":"KANG-LE WANG","doi":"10.1142/s0218348x24500774","DOIUrl":"https://doi.org/10.1142/s0218348x24500774","url":null,"abstract":"<p>The primary aim of this work is to investigate the nonlinear fractional Schrödinger equation, which is adopted to describe the ultra-short pulses in optical fibers. A variety of new soliton solutions and periodic solutions are constructed by implementing three efficient mathematical approaches, namely, the improved fractional <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>F</mi></math></span><span></span>-expansion method, fractional Bernoulli (<span><math altimg=\"eq-00002.gif\" display=\"inline\"><msup><mrow><mi>G</mi></mrow><mrow><mi>′</mi></mrow></msup></math></span><span></span>/<span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-expansion method and fractional cosine-sine method. Moreover, the dynamic properties of these obtained solutions are discussed by plotting some 3D and 2D figures. The employed three analytical methods can be widely adopted to solve different types of fractional evolution equations.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信