{"title":"NEW OPTICAL SOLITONS FOR NONLINEAR FRACTIONAL SCHRÖDINGER EQUATION VIA DIFFERENT ANALYTICAL APPROACHES","authors":"KANG-LE WANG","doi":"10.1142/s0218348x24500774","DOIUrl":null,"url":null,"abstract":"<p>The primary aim of this work is to investigate the nonlinear fractional Schrödinger equation, which is adopted to describe the ultra-short pulses in optical fibers. A variety of new soliton solutions and periodic solutions are constructed by implementing three efficient mathematical approaches, namely, the improved fractional <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>F</mi></math></span><span></span>-expansion method, fractional Bernoulli (<span><math altimg=\"eq-00002.gif\" display=\"inline\"><msup><mrow><mi>G</mi></mrow><mrow><mi>′</mi></mrow></msup></math></span><span></span>/<span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-expansion method and fractional cosine-sine method. Moreover, the dynamic properties of these obtained solutions are discussed by plotting some 3D and 2D figures. The employed three analytical methods can be widely adopted to solve different types of fractional evolution equations.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The primary aim of this work is to investigate the nonlinear fractional Schrödinger equation, which is adopted to describe the ultra-short pulses in optical fibers. A variety of new soliton solutions and periodic solutions are constructed by implementing three efficient mathematical approaches, namely, the improved fractional -expansion method, fractional Bernoulli (/-expansion method and fractional cosine-sine method. Moreover, the dynamic properties of these obtained solutions are discussed by plotting some 3D and 2D figures. The employed three analytical methods can be widely adopted to solve different types of fractional evolution equations.
这项工作的主要目的是研究非线性分数薛定谔方程,该方程用于描述光纤中的超短脉冲。通过采用三种有效的数学方法,即改进的分数 F 展开法、分数伯努利 (G′/G) 展开法和分数余弦正弦法,构建了多种新的孤子解和周期解。此外,还通过绘制一些三维和二维图形讨论了这些求解的动态特性。所采用的三种分析方法可广泛用于求解不同类型的分数演化方程。