NEW OPTICAL SOLITONS FOR NONLINEAR FRACTIONAL SCHRÖDINGER EQUATION VIA DIFFERENT ANALYTICAL APPROACHES

Fractals Pub Date : 2024-05-30 DOI:10.1142/s0218348x24500774
KANG-LE WANG
{"title":"NEW OPTICAL SOLITONS FOR NONLINEAR FRACTIONAL SCHRÖDINGER EQUATION VIA DIFFERENT ANALYTICAL APPROACHES","authors":"KANG-LE WANG","doi":"10.1142/s0218348x24500774","DOIUrl":null,"url":null,"abstract":"<p>The primary aim of this work is to investigate the nonlinear fractional Schrödinger equation, which is adopted to describe the ultra-short pulses in optical fibers. A variety of new soliton solutions and periodic solutions are constructed by implementing three efficient mathematical approaches, namely, the improved fractional <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>F</mi></math></span><span></span>-expansion method, fractional Bernoulli (<span><math altimg=\"eq-00002.gif\" display=\"inline\"><msup><mrow><mi>G</mi></mrow><mrow><mi>′</mi></mrow></msup></math></span><span></span>/<span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-expansion method and fractional cosine-sine method. Moreover, the dynamic properties of these obtained solutions are discussed by plotting some 3D and 2D figures. The employed three analytical methods can be widely adopted to solve different types of fractional evolution equations.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary aim of this work is to investigate the nonlinear fractional Schrödinger equation, which is adopted to describe the ultra-short pulses in optical fibers. A variety of new soliton solutions and periodic solutions are constructed by implementing three efficient mathematical approaches, namely, the improved fractional F-expansion method, fractional Bernoulli (G/G)-expansion method and fractional cosine-sine method. Moreover, the dynamic properties of these obtained solutions are discussed by plotting some 3D and 2D figures. The employed three analytical methods can be widely adopted to solve different types of fractional evolution equations.

通过不同分析方法获得非线性分数薛定谔方程的新光学孤子
这项工作的主要目的是研究非线性分数薛定谔方程,该方程用于描述光纤中的超短脉冲。通过采用三种有效的数学方法,即改进的分数 F 展开法、分数伯努利 (G′/G) 展开法和分数余弦正弦法,构建了多种新的孤子解和周期解。此外,还通过绘制一些三维和二维图形讨论了这些求解的动态特性。所采用的三种分析方法可广泛用于求解不同类型的分数演化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信