{"title":"与吕洛特展开中部分最大位数有关的一些分形","authors":"JIANG DENG, JIHUA MA, KUNKUN SONG, ZHONGQUAN XIE","doi":"10.1142/s0218348x24500786","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mo stretchy=\"false\">[</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">]</mo></math></span><span></span> be the Lüroth expansion of <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>x</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo></math></span><span></span>, and let <span><math altimg=\"eq-00003.gif\" display=\"inline\"><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>max</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span>. It is shown that for any <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>α</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, the level set <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\"><mrow><mstyle><mfenced close=\"\" open=\"{\" separators=\"\"><mrow></mrow></mfenced></mstyle><mi>x</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mfrac><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>log</mo><mo>log</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mi>α</mi><mstyle><mfenced close=\"\" open=\"}\" separators=\"\"><mrow></mrow></mfenced></mstyle></mrow></math></span><span></span></disp-formula-group> has Hausdorff dimension one. Certain sets of points for which the sequence <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> grows more rapidly are also investigated.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME FRACTALS RELATED TO PARTIAL MAXIMAL DIGITS IN LÜROTH EXPANSION\",\"authors\":\"JIANG DENG, JIHUA MA, KUNKUN SONG, ZHONGQUAN XIE\",\"doi\":\"10.1142/s0218348x24500786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\"><mo stretchy=\\\"false\\\">[</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\\\"false\\\">]</mo></math></span><span></span> be the Lüroth expansion of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\"><mi>x</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">]</mo></math></span><span></span>, and let <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo>max</mo><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>. It is shown that for any <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><mi>α</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, the level set <disp-formula-group><span><math altimg=\\\"eq-00005.gif\\\" display=\\\"block\\\"><mrow><mstyle><mfenced close=\\\"\\\" open=\\\"{\\\" separators=\\\"\\\"><mrow></mrow></mfenced></mstyle><mi>x</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">]</mo><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mfrac><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>log</mo><mo>log</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mi>α</mi><mstyle><mfenced close=\\\"\\\" open=\\\"}\\\" separators=\\\"\\\"><mrow></mrow></mfenced></mstyle></mrow></math></span><span></span></disp-formula-group> has Hausdorff dimension one. Certain sets of points for which the sequence <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> grows more rapidly are also investigated.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOME FRACTALS RELATED TO PARTIAL MAXIMAL DIGITS IN LÜROTH EXPANSION
Let be the Lüroth expansion of , and let . It is shown that for any , the level set has Hausdorff dimension one. Certain sets of points for which the sequence grows more rapidly are also investigated.