SOME FRACTALS RELATED TO PARTIAL MAXIMAL DIGITS IN LÜROTH EXPANSION

Fractals Pub Date : 2024-06-04 DOI:10.1142/s0218348x24500786
JIANG DENG, JIHUA MA, KUNKUN SONG, ZHONGQUAN XIE
{"title":"SOME FRACTALS RELATED TO PARTIAL MAXIMAL DIGITS IN LÜROTH EXPANSION","authors":"JIANG DENG, JIHUA MA, KUNKUN SONG, ZHONGQUAN XIE","doi":"10.1142/s0218348x24500786","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mo stretchy=\"false\">[</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">]</mo></math></span><span></span> be the Lüroth expansion of <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>x</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo></math></span><span></span>, and let <span><math altimg=\"eq-00003.gif\" display=\"inline\"><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>max</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span>. It is shown that for any <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>α</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, the level set <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\"><mrow><mstyle><mfenced close=\"\" open=\"{\" separators=\"\"><mrow></mrow></mfenced></mstyle><mi>x</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mfrac><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>log</mo><mo>log</mo><mi>n</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mi>α</mi><mstyle><mfenced close=\"\" open=\"}\" separators=\"\"><mrow></mrow></mfenced></mstyle></mrow></math></span><span></span></disp-formula-group> has Hausdorff dimension one. Certain sets of points for which the sequence <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> grows more rapidly are also investigated.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [d1(x),d2(x),,dn(x),] be the Lüroth expansion of x(0,1], and let Ln(x)=max{d1(x),,dn(x)}. It is shown that for any α0, the level set x(0,1]:limnLn(x)loglognn=α has Hausdorff dimension one. Certain sets of points for which the sequence {Ln(x)}n1 grows more rapidly are also investigated.

与吕洛特展开中部分最大位数有关的一些分形
设[d1(x),d2(x),...,dn(x),...]为 x∈(0,1]的吕洛斯展开,设 Ln(x)=max{d1(x),...dn(x)} 。研究表明,对于任意 α≥0 的水平集 x∈(0,1]:limn→∞Ln(x)loglognn=α,其 Hausdorff 维数为一。还研究了序列 {Ln(x)}n≥1 增长更快的某些点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信