bioRxiv - Cancer Biology最新文献

筛选
英文 中文
A Comprehensive Meta-Analysis of Breast Cancer Gene Expression 乳腺癌基因表达的综合元分析
bioRxiv - Cancer Biology Pub Date : 2024-09-06 DOI: 10.1101/2024.08.30.610515
Ifeanyichukwu O Nwosu, Stephen R Piccolo
{"title":"A Comprehensive Meta-Analysis of Breast Cancer Gene Expression","authors":"Ifeanyichukwu O Nwosu, Stephen R Piccolo","doi":"10.1101/2024.08.30.610515","DOIUrl":"https://doi.org/10.1101/2024.08.30.610515","url":null,"abstract":"Background: Triple-negative breast cancers (TNBC) occur more frequently in African Americans and are associated with worse outcomes when compared to other subtypes of breast cancer. These cancers lack expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) and have limited treatment options. To shed light on mechanisms behind these differences and suggest novel treatments, we used a meta-analytic approach to identify gene expression differences in breast tumors for people with self-reported African or European ancestry; additionally, we compared gene expression levels based on ER, PR, HER2 and TNBC status. Methods: After gathering and standardizing gene expression data and metadata from 106 datasets (representing 27,000 samples), we identified genes that were expressed differently between these groups via random-effects meta-analyses. To evaluate the robustness of these gene lists, we devised a novel computational methodology that uses cross validation and classification. We also computed overlaps between the most significant genes and known signaling pathways. Results: Using a false discovery rate threshold of 0.05, we identified genes that are known to play a significant role in their respective breast cancer subtypes (e.g., ESR1 for ER status and ERBB2 for HER2 status), thus confirming the validity of our findings. We also discovered genes that have not been reported previously and may be new targets for breast cancer therapy. GATA3, CA12, TBC1D9, XBP1 and FOXA1 were among the most significant genes for ER, PR, and TNBC. However, none of these genes overlapped with HER2 status, supporting prior research that HER2 tumors are mechanistically different from endocrine breast cancers. The genes identified from the race meta-analysis-including DNAJC15, HLA-DPA1, STAP2, CEP68, MOGS-have not been associated previously with race-specific breast-cancer outcomes, highlighting a potential area of further research. Conclusions: We have carried out a large meta-analysis of breast cancer gene expression data, identifying novel genes that may serve as potential biomarkers for breast cancer in diverse populations. We have also developed a computational method that identifies gene sets small enough to be analyzed and explored in future studies. This method has the potential to be applied to other cancers.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOXB6 and HOXB8 control immune-cancer cell interactions in pancreatic cancer. HOXB6和HOXB8控制着胰腺癌中免疫细胞与癌细胞的相互作用。
bioRxiv - Cancer Biology Pub Date : 2024-09-06 DOI: 10.1101/2024.09.06.611619
Ludivine Bertonnier-Brouty, Kavya Achanta, Jonas Andersson, Sara Bsharat, Tania Singh, Tuomas Kaprio, Jaana Hagstrom, Caj Haglund, Hanna Seppanen, Rashmi B Prasad, Isabella Artner
{"title":"HOXB6 and HOXB8 control immune-cancer cell interactions in pancreatic cancer.","authors":"Ludivine Bertonnier-Brouty, Kavya Achanta, Jonas Andersson, Sara Bsharat, Tania Singh, Tuomas Kaprio, Jaana Hagstrom, Caj Haglund, Hanna Seppanen, Rashmi B Prasad, Isabella Artner","doi":"10.1101/2024.09.06.611619","DOIUrl":"https://doi.org/10.1101/2024.09.06.611619","url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer lacking effective drugs and therefore new treatment targets are needed. Transcriptomic analysis comparing human embryonic and PDAC tissue identified a large overlap of expression profiles suggesting a re-initiation of developmental programs in pancreatic cancer. Specifically, we identified the transcription factors HOXB6 and HOXB8 as potential key regulators in PDAC. Loss of HOXB6 and HOXB8 in pancreatic cancer cells inhibited cell proliferation, induced apoptosis and senescence and enhanced gemcitabine sensitivity. Moreover, reduced HOXB6 and HOXB8 expression in pancreatic and lung adenocarcinoma cell lines affected transcription of immune response pathways which resulted in an increased sensitivity of cancer cells to anti-tumorigenic activities of macrophages suggesting that the HOXB6 and HOXB8 immune regulatory pattern is conserved in different cancer types. Additionally, naive M0 macrophages exposed to HOXB8 deficient PDAC cells were unable to differentiate into tumor associated macrophages, suggesting that HOXB8 promotes the transition of initial anti-tumor macrophage to a tumor-promoting macrophage phenotype in pancreatic cancer. Our findings indicate that HOXB6 and HOXB8 play important roles in regulating cell proliferation, immune response and treatment resistance to promote pancreatic cancer tumorigenesis and could be useful therapeutic targets.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of the RBP regulome reveals functional modules and drug candidates in liver cancer 对 RBP 调节组的全面分析揭示了肝癌的功能模块和候选药物
bioRxiv - Cancer Biology Pub Date : 2024-09-06 DOI: 10.1101/2024.09.04.611258
Mateusz Garbulowski, Riccardo Mosca, Carlos J. Gallardo-Dodd, Claudia Kutter, Erik L. L. Sonnhammer
{"title":"Comprehensive analysis of the RBP regulome reveals functional modules and drug candidates in liver cancer","authors":"Mateusz Garbulowski, Riccardo Mosca, Carlos J. Gallardo-Dodd, Claudia Kutter, Erik L. L. Sonnhammer","doi":"10.1101/2024.09.04.611258","DOIUrl":"https://doi.org/10.1101/2024.09.04.611258","url":null,"abstract":"RNA binding proteins (RBPs) are essential components of the transcriptomic regulome. Identifying the RBP regulome in cancer cells is crucial to discovering and understanding carcinogenesis mechanisms and providing new therapeutic targets. Here, we aimed to reveal the regulome of liver cancer upon specific perturbations. To this end, we applied a consensus Gene Regulatory Network (GRN) approach using knockdown data for the liver cancer cell line HepG2. By incorporating multiple GRNs from diverse inference methods, we constructed a highly precise GRN. To validate our results, we comprehensively evaluated the consensus GRN, focusing on characterizing the most relevant aspects of the liver cancer regulome. This included utilizing eCLIP-seq and RAPseq data to verify RBP interactions and binding sites. In addition, we performed an enrichment analysis of network modules and drug repurposing based on the inferred GRN. Taken together, our findings demonstrate the critical roles of RBP regulatory interactions in liver cancer that can be employed to improve treatment strategies.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential gene expression in cells with different p53 mutations identifies genome-wide p53 targets and shows distinct modulation of cellular pathways in response to DNA damage 不同 p53 基因突变细胞中的差异基因表达确定了全基因组 p53 靶点,并显示了细胞通路在应对 DNA 损伤时的不同调节方式
bioRxiv - Cancer Biology Pub Date : 2024-09-06 DOI: 10.1101/2024.09.05.611436
Patricia Eror Barnes, Maria Jose de la Concha, Kioko Mwikali, Bee Ling Ng, Hannes Ponstingl, Alena Pance
{"title":"Differential gene expression in cells with different p53 mutations identifies genome-wide p53 targets and shows distinct modulation of cellular pathways in response to DNA damage","authors":"Patricia Eror Barnes, Maria Jose de la Concha, Kioko Mwikali, Bee Ling Ng, Hannes Ponstingl, Alena Pance","doi":"10.1101/2024.09.05.611436","DOIUrl":"https://doi.org/10.1101/2024.09.05.611436","url":null,"abstract":"The fundamental transcription factor p53 regulates cellular processes and integrates signals of cellular stress, triggering a coordinated response to ensure survival of cells restored to healthy function and programmed death of those that could not be repaired. Unsurprisingly, this is one of the most mutated genes in human cancers, with most changes occurring in the DNA-binding domain of the protein. In this work, we take a genome-wide approach and use available resources to identify high confidence p53-target genes, that we examine in three breast cancer cell lines with different p53 status, wild type (MCF-7) and different mutations in the DNA-binding domain (MDA-MB231, T47D). Comparison of p53-targets expression in response to DNA damage by RNAseq and cellular assays reveals that MDA-MB231 have a severely impaired p53-dependent pathway functionality while T47D are much less affected. MDA-MB231 are more resistant to DNA damage yet unable to repair and able to override cell cycle arrest leading to survival while T47D are sensitive only to high dose and exposure to genotoxic agents. This data shows the variability of effects of different p53 mutations and highlight the importance of understanding the mechanisms of p53 in the context of genotoxicity-based treatment.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Self-Assembling Immune-Featured Osteosarcoma Patient/PDX Derived Organoid Model and Biobank for Personalized Immune Therapy 用于个性化免疫疗法的自组装免疫特征骨肉瘤患者/PDX 衍生类器官模型和生物库
bioRxiv - Cancer Biology Pub Date : 2024-08-11 DOI: 10.1101/2024.08.11.607471
Haoran Mu, Yining Tao, Jinzeng Wang, Xin He, Qi Zhang, Weixi Chen, Bing Yao, Sen Ding, Xiyu Yang, Liyuan Zhang, Hongsheng Wang, Dongqing Zuo, Jiakang Shen, Mengxiong Sun, Haoyu Wang, Ming Jiao, Xinmeng Jin, Yinhui Jin, Youzhi Liang, Yuyan Gong, Winfred Mao, Qian Liu, Zhuoying Wang, Yu Lv, Jing Xu, Tao Zhang, Yuqin Yang, Jun Lin, Fred J. Asward, James D. Joseph, Mingxi Li, Zhengdong Cai, Wei Sun, Liu Yang, Yingqi Hua
{"title":"A Self-Assembling Immune-Featured Osteosarcoma Patient/PDX Derived Organoid Model and Biobank for Personalized Immune Therapy","authors":"Haoran Mu, Yining Tao, Jinzeng Wang, Xin He, Qi Zhang, Weixi Chen, Bing Yao, Sen Ding, Xiyu Yang, Liyuan Zhang, Hongsheng Wang, Dongqing Zuo, Jiakang Shen, Mengxiong Sun, Haoyu Wang, Ming Jiao, Xinmeng Jin, Yinhui Jin, Youzhi Liang, Yuyan Gong, Winfred Mao, Qian Liu, Zhuoying Wang, Yu Lv, Jing Xu, Tao Zhang, Yuqin Yang, Jun Lin, Fred J. Asward, James D. Joseph, Mingxi Li, Zhengdong Cai, Wei Sun, Liu Yang, Yingqi Hua","doi":"10.1101/2024.08.11.607471","DOIUrl":"https://doi.org/10.1101/2024.08.11.607471","url":null,"abstract":"Osteosarcoma (OS) exhibit intra- and inter- heterogeneity, complicating the exploration of effective therapeutic strategies. Traditional in vitro and in vivo models are limited in inheriting biological and genomic heterogeneities of OS patients, even in inheriting the features on tumor microenvironment. The prolonged generation time of current models makes the drug development of OS slow and is not suitable to clinically rapid timing. Here, we introduce methods for generating and biobanking patient/PDX-derived osteosarcoma organoids (OS PD(X)Os) that recapitulate the histological, biological and genomic features of their paired OS patients. OS PD(X)Os can be generated quickly with high reliability in vitro or transplanted to immunodeficient mice. We further demonstrate an immune-featured OS PD(X)O (named iOS) model and its method for testing personalized chemotherapy response, personalized immune therapeutic strategy and target drug development, such as a novel PRMT5MTA inhibitor ARPN2169 on MTAP-deleted OS. Our studies show that iOS models maintain many typical features of OS and could be rapidly employed to investigate patient-specific therapeutic strategies. Additionally, our biobank establishes a rich resource for basic, translational and even clinical OS researches.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple Negative Breast Cancer Cells Acquire Lymphocyte Proteins and Genomic DNA During Trogocytosis with T Cells 三阴性乳腺癌细胞在与 T 细胞的逆行吞噬过程中获得淋巴细胞蛋白和基因组 DNA
bioRxiv - Cancer Biology Pub Date : 2024-08-10 DOI: 10.1101/2024.08.09.607029
Anutr Sivakoses, Haley Quinn Marcarian, Anika M Arias, Alice R Lam, Olivia C Ihedioha, Juan A Santamaria, Geoffrey C Gurtner, Alfred L. M. Bothwell
{"title":"Triple Negative Breast Cancer Cells Acquire Lymphocyte Proteins and Genomic DNA During Trogocytosis with T Cells","authors":"Anutr Sivakoses, Haley Quinn Marcarian, Anika M Arias, Alice R Lam, Olivia C Ihedioha, Juan A Santamaria, Geoffrey C Gurtner, Alfred L. M. Bothwell","doi":"10.1101/2024.08.09.607029","DOIUrl":"https://doi.org/10.1101/2024.08.09.607029","url":null,"abstract":"Trogocytosis is the process by which a recipient cell siphons small membrane fragments and proteins from a donor cell and may be utilized by cancer cells to avoid immune detection. We observed lymphocyte specific protein expressed by TNBC cells via immunofluorescence imaging of patient samples. Image analysis of CD45RA expression, a T cell specific protein, revealed that all stages of TNBCs express CD45RA. Flow cytometry revealed TNBC cells trogocytose CD45 protein from T cells. We also showed that the acquisition of these lymphoid markers is contact dependent. Confocal and super-resolution imaging further revealed CD45+ spherical structures containing T cell genomic DNA inside TNBC cells after co-culture. Trogocytosis between T cells and TNBC cells altered cancer cell gene expression. Our results revealed that CD45 is obtained by TNBC cells from T cells via trogocytosis and that TNBC cells express CD45 intracellularly and on the membrane.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
dia-PASEF Proteomics of Tumor and Stroma LMD Enriched from Archived HNSCC Samples 从归档 HNSCC 样品中富集的肿瘤和基质 LMD 的 dia-PASEF 蛋白质组学研究
bioRxiv - Cancer Biology Pub Date : 2024-08-10 DOI: 10.1101/2024.08.09.607341
Aswini Panigrahi, Allison L Hunt, Diego Assis, Matthew Willetts, Bhaskar V Kallakury, Bruce Davidson, Thomas P Conrads, Radoslav Goldman
{"title":"dia-PASEF Proteomics of Tumor and Stroma LMD Enriched from Archived HNSCC Samples","authors":"Aswini Panigrahi, Allison L Hunt, Diego Assis, Matthew Willetts, Bhaskar V Kallakury, Bruce Davidson, Thomas P Conrads, Radoslav Goldman","doi":"10.1101/2024.08.09.607341","DOIUrl":"https://doi.org/10.1101/2024.08.09.607341","url":null,"abstract":"We employed laser microdissection to selectively harvest tumor cells and stroma from the microenvironment of formalin-fixed, paraffin-embedded head and neck squamous cell carcinoma (HNSCC) tissues. The captured HNSCC tissue fractions were analyzed by quantitative mass spectrometry-based proteomics using a data independent analysis approach. In paired samples, we achieved excellent proteome coverage having quantified 6,668 proteins with a median quantitative coefficient of variation under 10%. We observed significant differences in relevant functional pathways between the spatially resolved tumor and stroma regions. Our results identified extracellular matrix (ECM) as a major component enriched in the stroma, including many cancer associated fibroblast signature proteins in this compartment. We demonstrate the potential for comparative deep proteome analysis from very low starting input in a scalable format that is useful to decipher the alterations in tumor and the stromal microenvironment. Correlating such results with clinical features or disease progression will likely enable identification of novel targets for disease classification and interventions.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyruvate from bone marrow mesenchymal stem cells supports myeloma redox homeostasis and anabolism 骨髓间充质干细胞产生的丙酮酸支持骨髓瘤的氧化还原平衡和合成代谢
bioRxiv - Cancer Biology Pub Date : 2024-08-09 DOI: 10.1101/2024.08.08.607157
Elías Vera-Sigüenza, Cristina Escribano-Gonzalez, Irene Serrano-Gonzalo, Kattri-Liis Eskla, Charlotte Speakman, Alejandro Huerta-Uribe, Lisa Vettore, Himani Rana, Adam Boufersaoui, Hans Vellama, Ramin Nashebi, Ielyaas Cloete, Jennie Roberts, Supratik Basu, Mark Drayson, Christopher Bunce, Guy Pratt, Fabian Spill, Oliver D.K. Maddocks, Daniel A. Tennant
{"title":"Pyruvate from bone marrow mesenchymal stem cells supports myeloma redox homeostasis and anabolism","authors":"Elías Vera-Sigüenza, Cristina Escribano-Gonzalez, Irene Serrano-Gonzalo, Kattri-Liis Eskla, Charlotte Speakman, Alejandro Huerta-Uribe, Lisa Vettore, Himani Rana, Adam Boufersaoui, Hans Vellama, Ramin Nashebi, Ielyaas Cloete, Jennie Roberts, Supratik Basu, Mark Drayson, Christopher Bunce, Guy Pratt, Fabian Spill, Oliver D.K. Maddocks, Daniel A. Tennant","doi":"10.1101/2024.08.08.607157","DOIUrl":"https://doi.org/10.1101/2024.08.08.607157","url":null,"abstract":"Multiple myeloma is an incurable cancer of plasma cells that depends on the bone marrow for its survival. Despite its prevalence, the molecular mechanisms underlying this malignancy remain poorly understood. In this study, we aim to bridge this knowledge gap by elucidating the metabolic interplay between myeloma cells and bone marrow mesenchymal stem cells (BMMSCs). BMMSCs are crucial in supporting myeloma cell metabolism, contributing to their proliferation, survival, and resistance to chemotherapy. Through a combination of mathematical modelling and experimental co-cultures, we demonstrate that pyruvate – the end product of glycolysis – plays a key role in myeloma cell metabolism. Our findings reveal that myeloma cells predominantly rely on the uptake of pyruvate produced by neighbouring BMM-SCs via the plasma membrane proton-linked monocarboxylate transporters MCT-1 and MCT-2 encoded by the Slc16a1 and a2 genes, respectively. Furthermore, we show that pharmacological inhibition of the MCT-1/2, with AZD3965, triggers a cascade of compensatory metabolic responses, disrupting redox balance and significantly reducing the proliferation capacity of co-cultured myeloma cells.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized LC-MS/MS method for Doxorubicin quantification: validating drug uptake and tumor reduction in zebrafish xenograft model of breast cancer 优化的多柔比星定量 LC-MS/MS 方法:验证斑马鱼乳腺癌异种移植模型的药物吸收和肿瘤缩小情况
bioRxiv - Cancer Biology Pub Date : 2024-08-09 DOI: 10.1101/2024.08.09.607268
Ghazala Rahman, Atanu Pramanik, Susmita Das, Anindya Roy, Anamika Bhargava
{"title":"Optimized LC-MS/MS method for Doxorubicin quantification: validating drug uptake and tumor reduction in zebrafish xenograft model of breast cancer","authors":"Ghazala Rahman, Atanu Pramanik, Susmita Das, Anindya Roy, Anamika Bhargava","doi":"10.1101/2024.08.09.607268","DOIUrl":"https://doi.org/10.1101/2024.08.09.607268","url":null,"abstract":"Doxorubicin, a potent chemotherapeutic drug, is widely used against various cancers, notably breast cancer. While its efficacy is well-documented, precise dosage determination in experimental models remains challenging. Zebrafish xenografts of various cancers confirm doxorubicin's anti-cancerous effect; however, since doxorubicin treatment of zebrafish larva is done by adding doxorubicin to fish water, the precise chemotherapeutic dosage for zebrafish larva remains unknown. In this study, we provide a liquid chromatography tandem mass-spectrometry (LC-MS/MS) method for quantifying doxorubicin uptake in zebrafish larvae and thus provide a direct estimate of doses required for the therapeutic effect. Alongside quantification, we measured the therapeutic effect of doxorubicin in zebrafish larvae xenografted with triple negative breast cancer cell line, MDA-MB-231. LD50 value of doxorubicin was first determined by incubating 3-days post fertilization (dpf) larvae with different doses of doxorubicin for 72 h. Doxorubicin was quantified both from zebrafish larval homogenate and treatment solution. Analysis was performed by selected-reaction monitoring (SRM) scans in positive ionization mode. LD50 value for 72 h calculated to be 35.95 mg/L. As expected, doxorubicin-treated xenografts exhibited a significant reduction in tumor growth. The range of limit of detection (LOD) and limit of quantification (LOQ) for doxorubicin were 2 and 5 μg/L respectively. Intra- and inter-day accuracy was within the range of 82-114%. Overall, in this study we describe a reliable method for quantifying doxorubicin in zebrafish larvae. Our study facilitates precise dosage estimation, enhancing the relevance of zebrafish xenograft model in cancer research and potentially improving translational applications of chemotherapeutic treatments.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Ca2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity 线粒体 Ca2+ 通过调节上皮细胞的可塑性控制胰腺癌的生长和转移
bioRxiv - Cancer Biology Pub Date : 2024-08-09 DOI: 10.1101/2024.08.08.607195
Jillian S. Weissenrieder, Jessica Peura, Usha Paudel, Nikita Bhalerao, Natalie Weinmann, Calvin Johnson, Maximilian Wengyn, Rebecca Drager, Emma Elizabeth Furth, Karl Simin, Marcus Ruscetti, Ben Stanger, Anil K. Rustgi, Jason R. Pitarresi, J Kevin Foskett
{"title":"Mitochondrial Ca2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity","authors":"Jillian S. Weissenrieder, Jessica Peura, Usha Paudel, Nikita Bhalerao, Natalie Weinmann, Calvin Johnson, Maximilian Wengyn, Rebecca Drager, Emma Elizabeth Furth, Karl Simin, Marcus Ruscetti, Ben Stanger, Anil K. Rustgi, Jason R. Pitarresi, J Kevin Foskett","doi":"10.1101/2024.08.08.607195","DOIUrl":"https://doi.org/10.1101/2024.08.08.607195","url":null,"abstract":"Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion (McuKO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to- mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in McuKO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信