基于图形曲率的免疫检查点反应生物标记物发现管道

James J Bannon, Charles R. Cantor, Bud Mishra
{"title":"基于图形曲率的免疫检查点反应生物标记物发现管道","authors":"James J Bannon, Charles R. Cantor, Bud Mishra","doi":"10.1101/2024.09.04.611306","DOIUrl":null,"url":null,"abstract":"Immune checkpoint inhibitors (ICIs), also called immune checkpoint blockers, are a promising category of targeted therapy for solid tumors. Predicting which patients will respond to ICI therapy remains an open problem under active investigation. This paper adds to this effort by developing a modular pipeline for the discovery of biomarkers from tumor RNA-sequencing data. We contextualize gene expression measurements using a protein-protein interaction (PPI) network and use a notion of graph curvature to find (pairs of) genes in the PPI that could serve as potential biomarkers. Our candidate biomarkers are evaluated using an extensive literature search and transfer learning experiments. We also provide a harmonized collection of drug-specific candidate markers found through rank aggregation that we believe merit further study.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Graph Curvature-Based Pipeline for Discovering Immune Checkpoint Response Biomarkers\",\"authors\":\"James J Bannon, Charles R. Cantor, Bud Mishra\",\"doi\":\"10.1101/2024.09.04.611306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immune checkpoint inhibitors (ICIs), also called immune checkpoint blockers, are a promising category of targeted therapy for solid tumors. Predicting which patients will respond to ICI therapy remains an open problem under active investigation. This paper adds to this effort by developing a modular pipeline for the discovery of biomarkers from tumor RNA-sequencing data. We contextualize gene expression measurements using a protein-protein interaction (PPI) network and use a notion of graph curvature to find (pairs of) genes in the PPI that could serve as potential biomarkers. Our candidate biomarkers are evaluated using an extensive literature search and transfer learning experiments. We also provide a harmonized collection of drug-specific candidate markers found through rank aggregation that we believe merit further study.\",\"PeriodicalId\":501233,\"journal\":{\"name\":\"bioRxiv - Cancer Biology\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cancer Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

免疫检查点抑制剂(ICIs),又称免疫检查点阻断剂,是一类很有前景的实体瘤靶向疗法。预测哪些患者会对 ICI 疗法产生反应仍是一个有待解决的问题,目前正在积极研究中。本文开发了一个模块化管道,用于从肿瘤 RNA 序列数据中发现生物标记物,为这一工作添砖加瓦。我们利用蛋白质-蛋白质相互作用(PPI)网络对基因表达测量结果进行上下文分析,并利用图曲率概念在 PPI 中找到可作为潜在生物标记物的(成对)基因。我们通过广泛的文献检索和迁移学习实验对候选生物标记物进行评估。我们还提供了通过等级聚合发现的药物特异性候选标记物的统一集合,我们认为这些标记物值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph Curvature-Based Pipeline for Discovering Immune Checkpoint Response Biomarkers
Immune checkpoint inhibitors (ICIs), also called immune checkpoint blockers, are a promising category of targeted therapy for solid tumors. Predicting which patients will respond to ICI therapy remains an open problem under active investigation. This paper adds to this effort by developing a modular pipeline for the discovery of biomarkers from tumor RNA-sequencing data. We contextualize gene expression measurements using a protein-protein interaction (PPI) network and use a notion of graph curvature to find (pairs of) genes in the PPI that could serve as potential biomarkers. Our candidate biomarkers are evaluated using an extensive literature search and transfer learning experiments. We also provide a harmonized collection of drug-specific candidate markers found through rank aggregation that we believe merit further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信