Jina Park, Ying-Yu Chen, Jennie J. Cao, Julia An, Ray-Whay Chiu Yen, John D. Outen, Stephen B. Baylin, Michael J. Topper
{"title":"MYC 加 IIa 类 HDAC 抑制可增强非小细胞肺癌的线粒体功能障碍","authors":"Jina Park, Ying-Yu Chen, Jennie J. Cao, Julia An, Ray-Whay Chiu Yen, John D. Outen, Stephen B. Baylin, Michael J. Topper","doi":"10.1101/2024.09.04.610116","DOIUrl":null,"url":null,"abstract":"MYC is frequently activated in cancer, leading to significant efforts to develop MYC inhibitors. While much progress has been made in targeting MYC, combination treatment strategies are needed to exploit this molecular vulnerability. To this end, we interrogated transcriptome data from cancer cell lines treated with MYC inhibitors and identified HDAC5 and HDAC9, both class IIa HDACs, as therapeutic targets to inhibit concurrently. Notably, these HDAC isoforms, which can be specifically targeted by small molecules, are known augmenters of several hallmarks of cancer. The combination of MYC and class IIa HDAC inhibition induces a significant reduction in viability for NSCLC cell lines with high MYC and mitochondrial pathway activation. Additionally, combination treatment induces a robust reduction of MYC with concomitant elevation of mitochondrial ROS, both of which have a causal relationship with therapeutic efficacy. Confirmation of in vivo efficacy was pursued in several animal model systems, with subsequent molecular correlate derivation confirming the importance of MYC depletion and mitochondrial dysfunction in driving drug efficacy. Ultimately, we define a therapeutic approach combining MYCi and class IIa HDACi to potentiate anti-tumor efficacy in NSCLC.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MYC plus class IIa HDAC inhibition potentiates mitochondrial dysfunction in non-small cell lung cancer\",\"authors\":\"Jina Park, Ying-Yu Chen, Jennie J. Cao, Julia An, Ray-Whay Chiu Yen, John D. Outen, Stephen B. Baylin, Michael J. Topper\",\"doi\":\"10.1101/2024.09.04.610116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MYC is frequently activated in cancer, leading to significant efforts to develop MYC inhibitors. While much progress has been made in targeting MYC, combination treatment strategies are needed to exploit this molecular vulnerability. To this end, we interrogated transcriptome data from cancer cell lines treated with MYC inhibitors and identified HDAC5 and HDAC9, both class IIa HDACs, as therapeutic targets to inhibit concurrently. Notably, these HDAC isoforms, which can be specifically targeted by small molecules, are known augmenters of several hallmarks of cancer. The combination of MYC and class IIa HDAC inhibition induces a significant reduction in viability for NSCLC cell lines with high MYC and mitochondrial pathway activation. Additionally, combination treatment induces a robust reduction of MYC with concomitant elevation of mitochondrial ROS, both of which have a causal relationship with therapeutic efficacy. Confirmation of in vivo efficacy was pursued in several animal model systems, with subsequent molecular correlate derivation confirming the importance of MYC depletion and mitochondrial dysfunction in driving drug efficacy. Ultimately, we define a therapeutic approach combining MYCi and class IIa HDACi to potentiate anti-tumor efficacy in NSCLC.\",\"PeriodicalId\":501233,\"journal\":{\"name\":\"bioRxiv - Cancer Biology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cancer Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.610116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.610116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MYC plus class IIa HDAC inhibition potentiates mitochondrial dysfunction in non-small cell lung cancer
MYC is frequently activated in cancer, leading to significant efforts to develop MYC inhibitors. While much progress has been made in targeting MYC, combination treatment strategies are needed to exploit this molecular vulnerability. To this end, we interrogated transcriptome data from cancer cell lines treated with MYC inhibitors and identified HDAC5 and HDAC9, both class IIa HDACs, as therapeutic targets to inhibit concurrently. Notably, these HDAC isoforms, which can be specifically targeted by small molecules, are known augmenters of several hallmarks of cancer. The combination of MYC and class IIa HDAC inhibition induces a significant reduction in viability for NSCLC cell lines with high MYC and mitochondrial pathway activation. Additionally, combination treatment induces a robust reduction of MYC with concomitant elevation of mitochondrial ROS, both of which have a causal relationship with therapeutic efficacy. Confirmation of in vivo efficacy was pursued in several animal model systems, with subsequent molecular correlate derivation confirming the importance of MYC depletion and mitochondrial dysfunction in driving drug efficacy. Ultimately, we define a therapeutic approach combining MYCi and class IIa HDACi to potentiate anti-tumor efficacy in NSCLC.