{"title":"循环热疗与紫锥菊苷相结合,对胰腺癌 PANC-1 细胞产生协同治疗效果","authors":"Wei-Ting Chen, You-Ming Chen, Guan-Bo Lin, Yu-Yi Kuo, Hsu-Hsiang Liu, Chih-Yu Chao","doi":"10.1101/2024.09.04.611320","DOIUrl":null,"url":null,"abstract":"Therapy targeting the suppression of human MutT homolog 1 (MTH1) has been gaining ground in recent years, thanks to its resulting significant increase of 8-hydroxy-2'-deoxyguanosine triphosphate (8-oxo-dGTP) accumulation in genomic DNA, causing DNA damage and apoptotic cell death. Echinacoside (Ech), a natural phenylethanoid glycoside first extracted from Echinacea angustifolia or desert plant Cistanches is one of a few natural products which are capable of inhibiting the MTH1 function. It, however, is difficult to apply it in clinical trials, due to high cost for effective dosage in need. In the study, we show that combination with thermal-cycling hyperthermia (TC-HT), a novel physical treatment, can amplify the curative effect of Ech, reducing its dosage in need significantly. The combination resulted in a multipronged mechanism targeting multiple key apoptotic regulating proteins such as Bcl-2 and MAPK family proteins. Its effect is expected to be comparable to the treatment strategy containing MTH1, Bcl-2, and ERK inhibitors, posing as new promising approach in cancer treatment.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of cycling hyperthermia and Echinacoside creates synergistic curing effect on pancreatic cancer PANC-1 cells\",\"authors\":\"Wei-Ting Chen, You-Ming Chen, Guan-Bo Lin, Yu-Yi Kuo, Hsu-Hsiang Liu, Chih-Yu Chao\",\"doi\":\"10.1101/2024.09.04.611320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Therapy targeting the suppression of human MutT homolog 1 (MTH1) has been gaining ground in recent years, thanks to its resulting significant increase of 8-hydroxy-2'-deoxyguanosine triphosphate (8-oxo-dGTP) accumulation in genomic DNA, causing DNA damage and apoptotic cell death. Echinacoside (Ech), a natural phenylethanoid glycoside first extracted from Echinacea angustifolia or desert plant Cistanches is one of a few natural products which are capable of inhibiting the MTH1 function. It, however, is difficult to apply it in clinical trials, due to high cost for effective dosage in need. In the study, we show that combination with thermal-cycling hyperthermia (TC-HT), a novel physical treatment, can amplify the curative effect of Ech, reducing its dosage in need significantly. The combination resulted in a multipronged mechanism targeting multiple key apoptotic regulating proteins such as Bcl-2 and MAPK family proteins. Its effect is expected to be comparable to the treatment strategy containing MTH1, Bcl-2, and ERK inhibitors, posing as new promising approach in cancer treatment.\",\"PeriodicalId\":501233,\"journal\":{\"name\":\"bioRxiv - Cancer Biology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cancer Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combination of cycling hyperthermia and Echinacoside creates synergistic curing effect on pancreatic cancer PANC-1 cells
Therapy targeting the suppression of human MutT homolog 1 (MTH1) has been gaining ground in recent years, thanks to its resulting significant increase of 8-hydroxy-2'-deoxyguanosine triphosphate (8-oxo-dGTP) accumulation in genomic DNA, causing DNA damage and apoptotic cell death. Echinacoside (Ech), a natural phenylethanoid glycoside first extracted from Echinacea angustifolia or desert plant Cistanches is one of a few natural products which are capable of inhibiting the MTH1 function. It, however, is difficult to apply it in clinical trials, due to high cost for effective dosage in need. In the study, we show that combination with thermal-cycling hyperthermia (TC-HT), a novel physical treatment, can amplify the curative effect of Ech, reducing its dosage in need significantly. The combination resulted in a multipronged mechanism targeting multiple key apoptotic regulating proteins such as Bcl-2 and MAPK family proteins. Its effect is expected to be comparable to the treatment strategy containing MTH1, Bcl-2, and ERK inhibitors, posing as new promising approach in cancer treatment.