Keisuke Takehana, Shino Kizaki, Tomomi Tanaka, Kentaro Uno, Kazuya Yoshida
{"title":"Comparison of lunar rover wheel performance in soils with different cohesive properties","authors":"Keisuke Takehana, Shino Kizaki, Tomomi Tanaka, Kentaro Uno, Kazuya Yoshida","doi":"10.1016/j.jterra.2024.101011","DOIUrl":"10.1016/j.jterra.2024.101011","url":null,"abstract":"<div><p>Wheeled mobile robots, rovers, are highly effective in lunar exploration. However, the lunar regolith can cause wheel slippage, resulting in an inability to travel for the rover. A single-wheel testbed is usually used to analyze a rover wheel’s driving performance. Our experiment can control the rotation and translation of the wheels separately, realizing experiments in any slippage condition. Moreover, this testbed can conduct experiments using regolith simulant with a cohesive property, in addition to Toyoura sand, which is non-cohesive sand collected from the earth.</p><p>This paper presents the results of a driving test on two types of loose soil: Toyoura sand and regolith simulant (FJS-1). The wheel used in the experiment is the preliminary version of the actual flight model of a 10 kg class lunar exploration microrover. The results reveal that the traction performance on both sands improves as the slip ratio increases. The performance did not depend on velocity but on vertical load. It should be noted that the cohesive simulant shows a higher difference in traction performance than Toyoura sand. These findings, measured in detail from the low-slip to the high-slip range, contribute to the actual driving operation of the rover missions.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101011"},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000533/pdfft?md5=f8a0ef69fd48078871449b719c0ec355&pid=1-s2.0-S0022489824000533-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Uberti, Daniele Beltrami, Marco Ferrari, Paolo Iora
{"title":"Agricultural tractor bogie axle adoption: Market opportunities and traction and ground pressure improvements through mobility metrics and simulations","authors":"Stefano Uberti, Daniele Beltrami, Marco Ferrari, Paolo Iora","doi":"10.1016/j.jterra.2024.101013","DOIUrl":"10.1016/j.jterra.2024.101013","url":null,"abstract":"<div><p>Traction and ground pressure are key aspects of modern off-highway machinery. On the one hand, the machinery must be able to move successfully on rough terrain, on the other hand, the soil cannot be excessively ruined, particularly in agriculture fields that must be as productive as possible. In this regard, when the soil is very sensitive to ground pressure and slip efficiency, tracks are often mounted on agricultural tractors rather than wheels. Regrettably, it significantly diminishes the multi-purpose functionality of modern agricultural tractors, which is an essential feature. To offer higher pulling efficiency, reduced ground pressure, and greater multi-purpose functionality, an agricultural tractor fitted with a rear bogie axle is hereby presented. A market analysis is carried out to demonstrate the potential of such a vehicle. Subsequently, an ideal agricultural tractor is proposed for benchmarking purposes and as the baseline for designing the bogie axle application. Their pulling performance is evaluated by using a custom-made spreadsheet, while a novel coefficient named Pull on Pressure is introduced to assess off-road mobility. Ultimately, the two variations of the agricultural tractors undergo testing on vehicle dynamics simulation software to conduct an initial comparative analysis.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101013"},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000557/pdfft?md5=a0fad430ede30a217fadc35d41d62b60&pid=1-s2.0-S0022489824000557-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiyang Zeng , Zhifeng Lin , Guohong Huang , Xiaoqing Yang , Yanfeng Li , Jiabao Su , Wei Xu
{"title":"Parameter identification of DEM-FEM coupling model to simulate traction behavior of tire-soil interaction","authors":"Haiyang Zeng , Zhifeng Lin , Guohong Huang , Xiaoqing Yang , Yanfeng Li , Jiabao Su , Wei Xu","doi":"10.1016/j.jterra.2024.101012","DOIUrl":"10.1016/j.jterra.2024.101012","url":null,"abstract":"<div><p>This paper presents a novel parameter identification method for DEM-FEM coupling model to investigate the trafficability of off-road tires on granular soils. Initially, an experimental device is developed to measure the bulk responses of granular materials i.e., angles of repose and shear. A series of numerical tests, including the Plackett-Burman tests, steepest-climbing tests and three-factor orthogonal tests, are then performed to formulate the mathematical regression and constraint equations. These equations establish the correlation between the three key model input parameters (namely, coefficients of static friction of acrylic wall-particle and particles, and coefficient of restitution of acrylic wall-particle) and the aforementioned bulk responses. After that, the non-dominated sorting genetic algorithm II (NSGA-II) is implemented to iteratively calculate the equations based on the multi-objective optimization method to obtain the optimal solution set. Finally, the effectiveness and feasibility of the parameter identification method are confirmed by comparing the results of indoor soil-bin tests and the corresponding numerical simulations in terms of tire sinkage, ruts and soil deformation and flow.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101012"},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000545/pdfft?md5=a523e28d920389c0ed3cd6b98a7555a0&pid=1-s2.0-S0022489824000545-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning applications in off-road vehicles interaction with terrain: An overview","authors":"Behzad Golanbari , Aref Mardani , Nashmil Farhadi , Giulio Reina","doi":"10.1016/j.jterra.2024.101003","DOIUrl":"10.1016/j.jterra.2024.101003","url":null,"abstract":"<div><p>With the advent of artificial intelligence, the analysis of systems related to complex processes has become possible or easier. The interaction of the traction factor of off-road vehicles with soil or other uncommon surfaces is one of the complex mechanical problems, which has been very difficult to model and analyze in conventional and previous methods due to numerous and variable parameters. This review article delves into the imperative and progression of integrating AI algorithms within the realm of modeling and predicting target parameters in Terramechanics engineering. Such endeavors are especially pertinent to predicting various soil properties, including soil compaction, traction, energy consumption, deformation, and associated factors. The application of AI encompasses various facets, including modeling and predicting traction, soil sinkage, rut depth, contact area, soil stress, density, and energy wasted on the traction device’s movement on the soil. The present study evaluates the solutions and benefits offered by AI-based methodologies in addressing soil-machine interaction challenges. Furthermore, the study investigates the constraints inherent in utilizing these methodologies.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 101003"},"PeriodicalIF":2.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000454/pdfft?md5=cdd07c6b8be6c20390df080d09d807d6&pid=1-s2.0-S0022489824000454-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinju Dong , Jingfu Jin , Zhicheng Jia , Yingchun Qi , Tingkun Chen , Lianbin He , Meng Zou
{"title":"Design and passability study of soil-plowing wheel facing soft terrain","authors":"Xinju Dong , Jingfu Jin , Zhicheng Jia , Yingchun Qi , Tingkun Chen , Lianbin He , Meng Zou","doi":"10.1016/j.jterra.2024.101002","DOIUrl":"10.1016/j.jterra.2024.101002","url":null,"abstract":"<div><p>On soft terrain, the rover wheels are easy to slip, sink, or even fail to move. This paper designs a soil-plowing wheel which is two-sided closed and without tread. The discrete element simulation shows that the wheel could grasp soil through both sides and plowing soil and that the ability to gain drawbar pull is not significantly reduced. The wheel is fabricated and tested to measure its sinkage, slip rate and drawbar pull. The wheel has high sinking, high slip and high drawbar pull. And the wheel is tested to verify the passability on five terrains of flat ground, climbing, out of sinkage, obstacle crossing and hard ground. The wheel exhibits good passability in all terrains. The soil-plowing wheel is tested verify the passability on three terrains of obstacle crossing, out of sinkage and climbing and using a three-rockers six-wheels rover. The wheel can pass through all terrain. More importantly, the wheel has an excellent ability to get out of sinkage. And it takes only 25.43 s for all six wheels to get out of sinkage. It is believed that the structure and test results of this wheel are valuable for the subsequent development of unmanned rover wheel.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101002"},"PeriodicalIF":2.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000442/pdfft?md5=2ff0e859f365afaf73ed25d7101a338f&pid=1-s2.0-S0022489824000442-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaling law modeling artificial soil-to-bulldozer blade interaction","authors":"Mohamed A.A. Abdeldayem , Mehari Z. Tekeste","doi":"10.1016/j.jterra.2024.101001","DOIUrl":"10.1016/j.jterra.2024.101001","url":null,"abstract":"<div><p>Bulldozers are one of the major off-road machine systems for cutting and transporting granular materials during earthmoving operations. With the growing demand for energy-efficient and accelerated optimization design cycles and automated earthmoving processes, researchers and engineers are exploring methods to model the soil-to-bulldozer interaction. This study proposes a similitude scaling law for the soil and scaled blade systems, providing an alternative approach to costly and time-consuming field-based design verification and validation for product engineering of Ground-Engaging Tools (GETs). In this soil bin study, we examined the interaction between scaled bulldozer blades and cohesive-frictional artificial soil, aiming to establish scaling laws of geometrically scaled blade ratio to two blade performance responses, soil reaction forces and soil mass. A randomized complete block design with five replications was conducted in a soil bin using five 3D printed geometric scales of the blade, λ = 1/8, λ = 1/9, λ = 1/11, λ = 1/13, and λ = 1/15, with λ = 1 representing the full-scale geometry of a Caterpillar D3K2 XL bulldozer blade. Blade soil cutting forces were measured using a load cell instrumented blade dynamometer carriage on a cohesive-frictional artificial soil in the bin. Each scaled blade traveled at a constant speed of 213 mm/s and the tool depth was set to 30 % of the blade height. After reaching full load, the cut soil mass and pile dimensions (height, width, and rupture length) above the undisturbed soil were also measured. A scaling law model was established between soil horizontal reaction forces and the five geometric blade scale ratios with a high coefficient of determination, R<sup>2</sup>, of 0.9898. Similarly, the scaling law (R<sup>2</sup> = 0.9951) was established between the five geometric scales and soil mass. The findings demonstrate that a scaling law model can be used for predicting the soil horizontal reaction force and soil load. The scaling law can be utilized for optimizing energy and productivity, enhancing GET product design optimization, and developing algorithms for energy-efficient automation of earthmoving processes.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 101001"},"PeriodicalIF":2.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ride comfort comparison between 4-poster and full vehicle driving simulations using difference thresholds","authors":"Cor-Jacques Kat, P. Schalk Els","doi":"10.1016/j.jterra.2024.101000","DOIUrl":"10.1016/j.jterra.2024.101000","url":null,"abstract":"<div><p>Difference thresholds of whole-body vibration is important to determine perceptibility of changes in vehicle vibration and can be used to guide ride comfort improvements. It is postulated that estimated difference thresholds in a laboratory setting should be applicable to real-world driving conditions given that the stimuli are similar. This study considers the aspect of vehicle vibration associated with the stimulus. A validated non-linear SUV vehicle model is simulated on a 4-poster test rig and driven in a straight-line over a rough road. This allows for the vehicle vibration to be compared between vertical excitation only (4-poster) and complete excitation (straight-line driving) by the road profile at each of the four wheels. Results show that differences in the seat vibration exists between the 4-poster test rig and straight-line driving simulations. These differences are larger than difference thresholds implying that they would most probably be perceivable. Further investigations are needed to determine the influence of differences in vibration stimuli on difference thresholds.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 101000"},"PeriodicalIF":2.4,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and multi-body dynamic analysis of inline and offset track configuration in deep-sea mining vehicles for enhanced traction in soft seabed","authors":"C. Janarthanan , R. Muruganandhan , K. Gopkumar","doi":"10.1016/j.jterra.2024.100999","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100999","url":null,"abstract":"<div><p>The deep sea polymetallic nodule mining vehicle maneuverability depends on the vehicle track parameters and track configuration. The traction force offered by the deep sea soil is very limited for the mining vehicle during dynamic operating conditions on the seabed and it is very critical to maneuver against the external resistances. The present study strives to arrive at optimum track parameters for enhancing the traction of the vehicle for the pre-determined seabed conditions. The efficacy of the four tracks in Inline and Offset track configurations on the soft soil has been compared. To improve the traction force estimation, the existing mathematical model was modified with the inclusion of dynamic variation of shear stress-shear displacement characteristics and variation in shear residual displacement concerning the track parameters. The modified mathematical model was solved in a well-established mathematical tool and found that there are 30 percent improvements in the traction force generation for the offset configuration over inline track configuration. The optimum track length to width ratio (<span><math><mrow><mi>L</mi><mo>/</mo><mi>b</mi></mrow></math></span>) was also estimated for the given contact area to configure the vehicle track for improvement of the traction. Further, a Multi-Body Dynamic (MBD) analysis has been carried out in commercially available soil-machine interaction tool for the inline and offset track configurations with actual measured seabed soil parameters. The MBD analysis proved that the sinkage and vehicle gradient is significantly increased in the inline track configuration due to disturbance created by the front tracks. The simulation results confirm that the offset track configuration is suitable for the deep sea soil conditions for handling the higher payload of a deep sea mining vehicle.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 100999"},"PeriodicalIF":2.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhifan Chen, Angxu Duan, Yang Liu, Hanqi Zhao, Chunyang Dai, Seng Hu, Xiaolong Lei, Jianfeng Hu, Lin Chen
{"title":"Discrete element contact model and parameter calibration of sticky particles and agglomerates","authors":"Zhifan Chen, Angxu Duan, Yang Liu, Hanqi Zhao, Chunyang Dai, Seng Hu, Xiaolong Lei, Jianfeng Hu, Lin Chen","doi":"10.1016/j.jterra.2024.100998","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100998","url":null,"abstract":"<div><p>The soil in southwest China is a cohesive soil in which discrete cohesive particles and aggregates coexist. In view of the problem that there are many studies on discrete cohesive particles and a lack of research on aggregates, discrete element software DEM is used to conduct a study on cohesive particles and agglomerates parameter calibration. The angle of repose is selected as the target value to calibrate the simulation parameters of sticky particles. Then, the simulation parameters of the viscous particles are used as the basis for the calibration of the contact parameters of the agglomerates, and shear experiments are conducted on the agglomerates, with the ultimate shear depth and ultimate shear force as target values. The results show that the parameters of the agglomerate are: Normal Stiffness per unit area is 5.627 × 10<sup>8</sup> N/m<sup>3</sup>, Shear Stiffness per unit area is 4.359 × 10<sup>8</sup> N/m<sup>3</sup>, Critical Normal Stress is 3.5 × 10<sup>6</sup> Pa, Critical Shear Stress is 4.5 × 10<sup>6</sup> Pa and Bonded Disk Radius is 5.43 mm. Through the particle sliding friction angle test and the agglomerate compression test, it was verified that the errors of sticky particles were 0.30 % and 0.37 % respectively, and the error of agglomerates was 1.69 %.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 100998"},"PeriodicalIF":2.4,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000405/pdfft?md5=a687c65faf0abd40ea368ca45146d2a1&pid=1-s2.0-S0022489824000405-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc N. Moore , Christopher Goodin , Ethan Salmon , Michael P. Cole , Paramsothy Jayakumar , Brittney English
{"title":"Override forces through clumps of small vegetation","authors":"Marc N. Moore , Christopher Goodin , Ethan Salmon , Michael P. Cole , Paramsothy Jayakumar , Brittney English","doi":"10.1016/j.jterra.2024.100988","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100988","url":null,"abstract":"<div><p>Vegetation override is an important aspect of off-road ground vehicle mobility. For autonomous ground vehicles (AGV), path-planning in off-road environments may be informed by the predicted resistance of vegetation in the navigation environment. However, there are no prior measurements on the override resistance of small stems (<span><math><mrow><mo><</mo></mrow></math></span>2.5 cm) and groups of small stems on medium-sized (<span><math><mrow><mo>≈</mo></mrow></math></span>1000 kg) vehicles. In this work, a series of override measurements for clumps of small vegetation that are relevant for off-road navigation by intermediate-sized AGV is presented. The development and calibration of a custom-made pushbar system with integrated load cells for directly measuring override forces is also presented, and a comparison of the results of the experiments to models developed for override of larger single stems is made. It is found that for clumps of small vegetation, the total override force is best predicted by the diameter of the largest stem in the clump. Additionally, it is found that the equations developed for larger stems under-predict the override forces exerted by smaller stems by about a factor of two.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"116 ","pages":"Article 100988"},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022489824000302/pdfft?md5=f6fd5b906e672e091fd9947120d8b3cf&pid=1-s2.0-S0022489824000302-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}