Journal of Terramechanics最新文献

筛选
英文 中文
Parameter study and identification of DEM modeling for varied sand moisture content based on bulldozing experiment 基于推土实验的参数研究和不同含沙量 DEM 模型的识别
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-04-05 DOI: 10.1016/j.jterra.2024.100971
Naohiro Sato, Genya Ishigami
{"title":"Parameter study and identification of DEM modeling for varied sand moisture content based on bulldozing experiment","authors":"Naohiro Sato,&nbsp;Genya Ishigami","doi":"10.1016/j.jterra.2024.100971","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100971","url":null,"abstract":"<div><p>The discrete element method (DEM) has been widely used to simulate varied sand particles interacting with earthmoving machines. However, past research using DEM barely addressed accurate verification and validation for different sand moisture content. Therefore, the main purpose of this paper is to reveal the range of key parameters of an adhesive force model used in the DEM simulation corresponding to the specific sand moisture content. We considered the bulldozing phenomenon to be typical earthmoving work and performed the bulldozing experiments under different sand moisture levels to investigate the bulldozing force variations. Subsequently, the DEM simulation with an adhesive force model calculated the bulldozing force corresponding to the experimental results. The values for two adhesive parameters, i.e., a scaling magnitude and the maximum adhesive distance between particles, were adjusted such that the maximum bulldozing force calculated in the DEM coincides with that of the experiments under different moisture contents. The experimental verification of the DEM revealed the relationship curves between these two key parameters corresponding to the different moisture content. The relationship obtained in this paper implies that the DEM simulation carefully adjusting the adhesive force parameters can reproduce machine interaction on moist sand environments accurately.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100971"},"PeriodicalIF":2.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140347074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigations of traction behaviors of a pneumatic tire on wet granular terrains: DE/FE simulations 对充气轮胎在潮湿颗粒地形上的牵引行为进行数值研究:DE/FE 模拟
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-04-03 DOI: 10.1016/j.jterra.2024.100972
Haiyang Zeng , Xuelian Tang , Shunhua Chen , Hengwei Qi
{"title":"Numerical investigations of traction behaviors of a pneumatic tire on wet granular terrains: DE/FE simulations","authors":"Haiyang Zeng ,&nbsp;Xuelian Tang ,&nbsp;Shunhua Chen ,&nbsp;Hengwei Qi","doi":"10.1016/j.jterra.2024.100972","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100972","url":null,"abstract":"<div><p>This paper presents a discrete element/finite element (DE/FE) coupling method to investigate the trafficability of off-road tires on wet granular terrains. Firstly, a DE model of the wet terrain is established, and a linear contact model is adopted to describe the interaction between particles, while the adhesion effect between wet particles is simulated by a liquid bridge force model. An FE model of an off-road tire is then developed, and the Yeoh hyperelastic material model is used to describe the large deformations and nonlinear mechanical behaviors of the off-road tire. Furthermore, numerical simulations of the angle of repose of wet particles are compared with experimental studies to verify the effectiveness of the DE/FE coupling method. Finally, the tire traction behavior under different complex working conditions is predicted by the presented DE/FE coupling approach. The simulation results show that the absolute value of tire sinkage increases almost linearly (the sinkage is 97.1 mm at 25% moisture content) with the rise of moisture content among particles. The rate of change of sinkage is greater for small friction coefficients (<span><math><mrow><mo>&lt;</mo></mrow></math></span> 0.3) than that for large friction coefficients (<span><math><mrow><mo>⩾</mo></mrow></math></span>0.3). The drawbar pull experiences a rapid increase for the slide friction coefficient with a range 0.3 and 0.7, after which the rate of change slows down (<span><math><mrow><mo>⩾</mo></mrow></math></span>0.7). However, the drawbar pull exhibits an opposite trend as the tire pressure and height of the tread pattern increase. Numerical results also indicate that the smaller the slide friction coefficient, the larger the soil deformation, flow, and failure area in wet granular terrains.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100972"},"PeriodicalIF":2.4,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the mechanical model of footpad-terrain for walking robot moving in low gravity environment 低重力环境下行走机器人的脚垫-地形力学模型研究
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-03-19 DOI: 10.1016/j.jterra.2024.100970
Zhen Chen, Meng Zou, Lining Chen, Yuzhi Wang, Lianbin He
{"title":"Study on the mechanical model of footpad-terrain for walking robot moving in low gravity environment","authors":"Zhen Chen,&nbsp;Meng Zou,&nbsp;Lining Chen,&nbsp;Yuzhi Wang,&nbsp;Lianbin He","doi":"10.1016/j.jterra.2024.100970","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100970","url":null,"abstract":"<div><p>Due to the low gravity environment and the influence of complex terrain condition in deep space exploration, wheeled mobile systems are prone to meet motion abnormalities. The excellent motion performance of walking robot is more suitable for the future deep space exploration, but the robots are prone to occur large sinkage in soft terrain. A mechanical model is built to describe a gait cycle of a walking robot under soft terrain and low gravity environment. The force on the footpad during actual movement in a gait cycle is obtained through a single-legged test bench under the simulated planet terrain. The effects of sizes of footpads, sinkage and other factors are explored. The results indicate that the larger the size of the footpad, the greater the horizontal force on the footpad, the better the motion performance is. But as the size of footpad increase, the vertical force decreases which indicates poor support performance. By comparing and analyzing the model values with the experimental values, for the horizontal force <em>F<sub>T</sub></em>, the average errors for the average force and peak force are 10.05% and 7.76%. The average errors for average force and peak force are 5.19% and 5.86% for vertical force <em>F<sub>N</sub></em>. The values are not significantly different from the model values and experimental values which indicates that the mechanical model has high accuracy. The obtained mechanical model can provide a reference for the motion of walking robots in complex low gravity environment.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100970"},"PeriodicalIF":2.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of contact length of bias ply tractor tire on its tractive performance 斜交帘布拖拉机轮胎的接触长度对其牵引性能的影响
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-03-14 DOI: 10.1016/j.jterra.2024.100969
Harsha Chandrakar, Hifjur Raheman
{"title":"Effect of contact length of bias ply tractor tire on its tractive performance","authors":"Harsha Chandrakar,&nbsp;Hifjur Raheman","doi":"10.1016/j.jterra.2024.100969","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100969","url":null,"abstract":"<div><p>In order to study the effect of contact length of tire on tractive performance of tractor, experiments were conducted using a single wheel tester fitted with 13.6–28 bias ply tire in a soil bin in soft soil condition. Contact length and contact width were measured at different normal loads (9.8 kN and 13.72 kN) and inflation pressures (83, 103, 124 and 138 kPa). Results showed that the contact length had higher influence on tire pulling ability and tractive efficiency as compared to contact width of the tire. An equation for predicting contact length was developed using XLSTAT software, with normal load and inflation pressure as an independent variables and contact length as a dependent variable. The model demonstrated high efficiency with a coefficient of determination (R<sup>2</sup>) 0.96, a percentage of variation 0.76 %, a root mean square error 10.841, and an adjusted R<sup>2</sup> 0.95. Additionally, a second-order polynomial equation was developed using curve fitter app to estimate drawbar pull of a tractor by keeping wheel slip and contact length as independent parameters. Validation with another set of data obtained for 14.6–28 tire yielded R<sup>2</sup> 0.93 and less than 4 % variation, thus indicated the model’s accuracy in predicting drawbar pull.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100969"},"PeriodicalIF":2.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of terramechanics properties of spherical and cylindrical feet for planetary legged robots on deformable terrain 行星腿机器人球形脚和圆柱形脚在可变形地形上的地形力学特性比较研究
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-03-12 DOI: 10.1016/j.jterra.2024.100968
Huaiguang Yang , Chu Zhang , Liang Ding , Qingqing Wei , Haibo Gao , Guangjun Liu , Liyuan Ge , Zongquan Deng
{"title":"Comparative study of terramechanics properties of spherical and cylindrical feet for planetary legged robots on deformable terrain","authors":"Huaiguang Yang ,&nbsp;Chu Zhang ,&nbsp;Liang Ding ,&nbsp;Qingqing Wei ,&nbsp;Haibo Gao ,&nbsp;Guangjun Liu ,&nbsp;Liyuan Ge ,&nbsp;Zongquan Deng","doi":"10.1016/j.jterra.2024.100968","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100968","url":null,"abstract":"<div><p>Legged robots exhibit superior adaptability to complex extraterrestrial environments compared to wheeled mobile robots. However, legged robots employed in planetary exploration face challenges in dealing with soft terrains. This paper focuses on investigating the issues of large foot sinkage and slip encountered by legged robots on soft terrain. Extensive experiments on quasi-static loading, loading with impact and tangential force have been carried out for both spherical and cylindrical feet. The variations in normal force, tangential force, and sinkage are meticulously recorded and analyzed. Foot-terrain interaction mechanics models are established to address scenarios involving substantial sinkage and sliding sinkage, leveraging the stress distribution characteristics of deformable soil. Accurate models are obtained through parameter identification utilizing experimental data, which can aid in the foot design of legged robots intended for planetary exploration. Based on the developed models and experimental data, a design optimization scheme for the coronal foot is proposed, leading to performance enhancements that are validated through experimental verification.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100968"},"PeriodicalIF":2.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor-train compression of discrete element method simulation data 离散元素法模拟数据的张量列车压缩
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-02-27 DOI: 10.1016/j.jterra.2024.100967
Saibal De , Eduardo Corona , Paramsothy Jayakumar , Shravan Veerapaneni
{"title":"Tensor-train compression of discrete element method simulation data","authors":"Saibal De ,&nbsp;Eduardo Corona ,&nbsp;Paramsothy Jayakumar ,&nbsp;Shravan Veerapaneni","doi":"10.1016/j.jterra.2024.100967","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.100967","url":null,"abstract":"<div><p>We propose a framework for discrete scientific data compression based on the tensor-train (TT) decomposition. Our approach is tailored to handle unstructured output data from discrete element method (DEM) simulations, demonstrating its effectiveness in compressing both raw (e.g.<!--> <!-->particle position and velocity) and derived (e.g.<!--> <!-->stress and strain) datasets. We show that geometry-driven “tensorization” coupled with the TT decomposition (known as quantized TT) yields a hierarchical compression scheme, achieving high compression ratios for key variables in these DEM datasets.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100967"},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139986861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling soil-rotor blade interaction of vertical axis rotary tiller using discrete element method (DEM) 利用离散元素法(DEM)模拟垂直轴旋耕机的土壤-旋耕刀相互作用
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-01-18 DOI: 10.1016/j.jterra.2024.01.001
Prakhar Patidar, Peeyush Soni, Achala Jain, Vijay Mahore
{"title":"Modelling soil-rotor blade interaction of vertical axis rotary tiller using discrete element method (DEM)","authors":"Prakhar Patidar,&nbsp;Peeyush Soni,&nbsp;Achala Jain,&nbsp;Vijay Mahore","doi":"10.1016/j.jterra.2024.01.001","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.01.001","url":null,"abstract":"<div><p><span>Vertical-axis rotary tillers are preferred over other soil-engaging tools for inter-culture operations due to their superiority in avoiding tillage pan formation, facilitating drainage, and operability at higher forward speeds. To optimize their design and operation, and to promote sustainable agricultural practices, a greater understanding of the kinematics, dynamics, and soil-structure interaction of vertical axis rotary tiller is required, along with the optimization of required energy. In this study, discrete element method (DEM) is used to analyse the interaction between soil and rotor blades, by incorporating the Hysteric Spring Contact Model along with linear cohesion model v2. Soil-rotor blade interaction DEM model is developed using Altair® EDEM® to analyse the effect of u/v ratio (2.13, 2.90, 3.70, and 4.44) and average operating depth (30 mm, 50 mm, and 70 mm) on draft and torque requirements for the rotor blade, as well as experimentally validating the simulation in a soil bin. In this study, lower u/v ratios in vertical axis rotary tillers demand higher torque for larger soil volumes. Additionally, torque rises with operating depth, owing to increased soil volume and strength. The simulated results closely followed the measured draft and torque for all combinations of u/v ratio and operating depth (R</span><sup>2</sup> 0.96 and 0.99). These findings indicate the DEM model as a dependable approach for modelling the performance of rotary tillers under different soil conditions.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"112 ","pages":"Pages 59-68"},"PeriodicalIF":2.4,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plowing drag-adaptive operation control method based on motor temperature compensation for electric tractor 基于电动拖拉机电机温度补偿的耕作阻力自适应运行控制方法
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-01-18 DOI: 10.1016/j.jterra.2024.01.002
Qi Wang , Xudong Wang , Wei Wang , Yongjie Cui , Yuling Song
{"title":"Plowing drag-adaptive operation control method based on motor temperature compensation for electric tractor","authors":"Qi Wang ,&nbsp;Xudong Wang ,&nbsp;Wei Wang ,&nbsp;Yongjie Cui ,&nbsp;Yuling Song","doi":"10.1016/j.jterra.2024.01.002","DOIUrl":"https://doi.org/10.1016/j.jterra.2024.01.002","url":null,"abstract":"<div><p>Traditional plowing efficiency control methods are difficult to balance the tillage efficiency and uniform plowing depth, and the impact of the motor temperature rise on the control accuracy cannot be ignored during electric tractor operations. Therefore, a plowing drag-adaptive operation control method considering the motor temperature rise was proposed for an electric tractor equipped with a sliding battery pack. Firstly, a field-oriented control model with temperature compensation for the PMSM was developed based on the obtained winding resistances and flux links at different temperatures. Then, the driving torque and battery displacement were regulated to adapt the drag variation by the fuzzy neural network algorithm, allowing joint control of the speed and slip rate, and the simulation analysis was performed. Finally, a field plowing test was conducted. The results showed that the traction efficiency is increased by 23.33 % compared with those without control, and when the motor temperature rises, it can be compensated for temperature to output the required torque accurately, and the average relative errors in both speed and slip rate are reduced. The proposed method can improve the slip and greatly enhance the plowing operational stability, which provided technical support for the automatic precision operation of electric tractors.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"112 ","pages":"Pages 69-79"},"PeriodicalIF":2.4,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-simulation for optimal working parameter selection during soil vibratory compaction process 土壤振动压实过程中优化工作参数选择的协同模拟
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-01-12 DOI: 10.1016/j.jterra.2023.12.002
Jianjun Shen, Zheng Tang, Feng Jia, Zhen Liu, Jingru Hou
{"title":"Co-simulation for optimal working parameter selection during soil vibratory compaction process","authors":"Jianjun Shen,&nbsp;Zheng Tang,&nbsp;Feng Jia,&nbsp;Zhen Liu,&nbsp;Jingru Hou","doi":"10.1016/j.jterra.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.12.002","url":null,"abstract":"<div><p>The working parameters of vibratory rollers have an important effect on the compaction quality. The traditional method of obtaining the best working parameters through field tests is time-consuming and laborious. In order to determine the best working parameters more conveniently and accurately, a mechanical-hydraulic-finite element co-simulation method is proposed in this paper. This method considers the effect of the hydraulic system<span> on vibration compaction and makes the simulation result as close to the actual condition as possible. By analyzing the change of soil stress and settlement, the effect regulation of working parameters on compaction quality is obtained. The results show that the proposed co-simulation method can accurately reflect the real conditions, and the best compaction quality can be achieved when the walking speed is 3 km/h, the vibration frequency is 24 Hz, and the amplitude is 2.5 mm. The research provides a reference for improving the compaction quality and compacting-related simulation.</span></p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"112 ","pages":"Pages 45-57"},"PeriodicalIF":2.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of passive steering mechanism for small Mars surface exploration rovers 小型火星表面探测车被动转向机制研究
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2023-12-19 DOI: 10.1016/j.jterra.2023.12.001
Asahi Oe, Shin-Ichiro Nishida, Shintaro Nakatani
{"title":"Study of passive steering mechanism for small Mars surface exploration rovers","authors":"Asahi Oe,&nbsp;Shin-Ichiro Nishida,&nbsp;Shintaro Nakatani","doi":"10.1016/j.jterra.2023.12.001","DOIUrl":"https://doi.org/10.1016/j.jterra.2023.12.001","url":null,"abstract":"<div><p>Planetary surface exploration rovers are required to have the ability to travel over uneven ground such as sandy or rocky terrain. In addition, to maintain long-term functionality under severe mass constraints, the rover must be highly reliable with a simple configuration. The reduction in the number of actuators will also contribute to a reduction in the number of electrical components involved and improve reliability. This paper proposes a lightweight and simple traveling and steering mechanism that combines a path-following system based on the difference in rotational speed of the left and right wheels when traveling in a curve and a passive Ackermann mechanism without an actuator, assuming a small exploration rover of a size and mass that can be mounted on a Japanese launch vehicle. We also propose a correction method to improve the path-following performance. We also developed a prototype wheeled rover of the target size and weight, and tested and evaluated the effectiveness of the proposed method in following the target path and overcoming obstacle on simulated soil.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"112 ","pages":"Pages 35-43"},"PeriodicalIF":2.4,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138770170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信