Journal of Terramechanics最新文献

筛选
英文 中文
Modelling and simulation fundamentals in design for ground vehicle mobility Part II: Western approach 地面车辆机动性设计中的建模和模拟基础 第二部分:西方方法
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-11-02 DOI: 10.1016/j.jterra.2024.101023
{"title":"Modelling and simulation fundamentals in design for ground vehicle mobility Part II: Western approach","authors":"","doi":"10.1016/j.jterra.2024.101023","DOIUrl":"10.1016/j.jterra.2024.101023","url":null,"abstract":"<div><div>For many decades, different approaches, fundamentals, and expressions have been developed in various countries for military vehicle modelling and simulation (M&amp;S) as a core component of ground vehicle design for mobility. The political division of the world into the West and East that existed before the Soviet Union breakdown in 1991 had not facilitated collaboration between researchers and engineers of both sides, and, thus, they created and practiced their own approaches. The war in Ukraine urgently prompted analysis of the origins and essence of the Western and Eastern technical paradigms, which being conceptually different to ground vehicle mobility, had predetermined the development of vehicle M&amp;S methods and techniques in their parts of the world, specifically for studying dynamic interactions of vehicles with severely uncertain terrains, which impact vehicle behavior and performance, and, thus, may either facilitate mission accomplishment or lead to its failure. Furthermore, this analysis of the technical paradigms aims to further advance M&amp;S fundamentals for next generation combat vehicles as described in the U.S. Army’s 2019 Modernization Strategy. Part I of this article considers the Eastern approach and the Western approach is presented in Part II.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of tire mobility on deformable plastic clay in saturated conditions using total and effective stress frameworks 利用总应力和有效应力框架对饱和条件下轮胎在可变形塑性粘土上的移动性进行数值分析
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-26 DOI: 10.1016/j.jterra.2024.101024
{"title":"Numerical analysis of tire mobility on deformable plastic clay in saturated conditions using total and effective stress frameworks","authors":"","doi":"10.1016/j.jterra.2024.101024","DOIUrl":"10.1016/j.jterra.2024.101024","url":null,"abstract":"<div><div>Modeling and performance prediction of tires on wet, plastic, cohesive soils is challenging. In wet soils, the undrained shear strength reduces as water content increases. This work aims to model highly deformable saturated clay (plastic state) to predict the short-term effect on the soil due to a single pneumatic tire pass. The external loads on the soil (total stresses) can be carried by the soil skeleton (effective stress) and/or water (pore water pressure). Fundamentally, effective stresses determine soil failure. Hence, material models can be defined using two frameworks: total and effective stress. In total stress analysis, commonly found in literature, soil and water are modeled as one medium to address rapid loading. In effective stress analysis, pore pressure evolution can be tracked through hydromechanical formulations with different drainage conditions (dry and fully saturated soils). Further, different numerical techniques (FEM, ALE, and SPH) are compared. The effective stress model captures an accumulation of excess pore water pressure after one tire pass resulting from soil non-linear behavior, which may potentially affect the tire performance of later passes. In addition, the FEM model fails at higher normal loads and slip ratios due to excessive deformation; ALE and SPH give more stable solutions for large deformations.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of tire characteristics driving on asphalt paved roads covered with volcanic ash 在铺有火山灰的沥青路面上行驶的轮胎特性分析
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-24 DOI: 10.1016/j.jterra.2024.101025
{"title":"Analysis of tire characteristics driving on asphalt paved roads covered with volcanic ash","authors":"","doi":"10.1016/j.jterra.2024.101025","DOIUrl":"10.1016/j.jterra.2024.101025","url":null,"abstract":"<div><div>Japan has many active volcanoes, and a large eruption can cause ash fall over a wide area. The accumulation of volcanic ash on paved roads affects the driving of vehicles. Therefore, we collected data by driving over volcanic ash accumulated on paved surface with a vehicle equipped with devices that can measure the force applied to the running tires. Vehicle driving tests were conducted at constant speed, rapid acceleration, and rapid deceleration. Data were collected on flat straight roads as well as on roads with grades and curves. In addition to longitudinal, lateral, and vertical tire forces, camber angle, rotation speed, and ground speed were measured. This paper discusses the effects of volcanic ash covering paved roads on driving by processing the tire data obtained. The relationship between the sideslip angle and side force can be obtained by processing turning driving data, and these effects were modeled using a neural network and Gaussian process that can consider multiple variables such as tire sideslip angle, camber angle, and vertical force.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling and simulation fundamentals in design for ground vehicle mobility part I: Eastern approach 地面车辆机动性设计中的建模和仿真基础 I 部分:东方方法
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-19 DOI: 10.1016/j.jterra.2024.101020
{"title":"Modelling and simulation fundamentals in design for ground vehicle mobility part I: Eastern approach","authors":"","doi":"10.1016/j.jterra.2024.101020","DOIUrl":"10.1016/j.jterra.2024.101020","url":null,"abstract":"<div><div>For many decades, different approaches, fundamentals, and expressions have been developed in various countries for military vehicle modelling and simulation (M&amp;S) as a core component of ground vehicle design for mobility. The political division of the world into the West and East that existed before the Soviet Union breakdown in 1991 had not facilitated collaboration between researchers and engineers of both sides, and, thus, they created and practiced their own approaches. The war in Ukraine urgently prompted analysis of the origins and essence of the Western and Eastern technical paradigms, which being conceptually different to ground vehicle mobility, had predetermined the development of vehicle M&amp;S methods and techniques in their parts of the world, specifically for studying dynamic interactions of vehicles with severely uncertain terrains, which impact vehicle behavior and performance, and, thus, may either facilitate mission accomplishment or lead to its failure. Furthermore, this analysis of the technical paradigms aims to further advance M&amp;S fundamentals for next generation combat vehicles as described in the U.S. Army’s 2019 Modernization Strategy. Part I of this article considers the Eastern approach and the Western approach is presented in Part II.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards more efficient tractors: Assessing and refining traction test procedures for agricultural tractors 提高拖拉机的效率:评估和完善农用拖拉机牵引力测试程序
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-09 DOI: 10.1016/j.jterra.2024.101018
{"title":"Towards more efficient tractors: Assessing and refining traction test procedures for agricultural tractors","authors":"","doi":"10.1016/j.jterra.2024.101018","DOIUrl":"10.1016/j.jterra.2024.101018","url":null,"abstract":"<div><div>A reliable testing procedure is needed to benchmark different vehicle and tyre parameters. Several testing procedures within two main families – transient and steady states – were adopted to evaluate drawbar performance of tractors. The two procedural families were not hitherto compared using a full vehicle. This article aims to fill this gap. The transient and steady-state procedures were tested using a tractor rated of 230 kW sets in different configurations and equipped with sensors for evaluating the tractive parameters. In the transient procedure, the drawbar load was continuously increased to maintain a fixed ground speed. In the steady-state procedure, the drawbar load was gradually increased by reducing the ground speed. The maximum drawbar force generated by the tractor differed little between procedures, but a difference was observed in power delivery efficiency, mostly for the transmission’s influence during transient conditions leading to variable transmission efficiency. The results of the steady-state procedure for different vehicle configurations were more consistent with findings in the literature than those of the transient procedure. The steady-state procedure is better than the other but it requires more land and therefore it is less convenient when drawbar performances must be quickly evaluated for many vehicle and soil configurations.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting terrain deformation patterns in off-road vehicle-soil interactions using TRR algorithm 利用 TRR 算法预测越野车与土壤相互作用的地形变形模式
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-09 DOI: 10.1016/j.jterra.2024.101021
{"title":"Predicting terrain deformation patterns in off-road vehicle-soil interactions using TRR algorithm","authors":"","doi":"10.1016/j.jterra.2024.101021","DOIUrl":"10.1016/j.jterra.2024.101021","url":null,"abstract":"<div><div>Soil deformation is one of the parameters affecting the performance of off-road vehicles, including traction, mobility, and steering. This study offers an examination of soil deformation resulting from interactions with pneumatic and track wheels. Experiments were conducted using a soil bin with a single-wheel test rig, equipped with both a standard agricultural tire and a customized track wheel. Three distinct levels of vertical loads (2, 3, and 4kN) and forward velocities (1, 2, and 3 km/h) were applied using the wheel tester. The displacement and deformation of the soil layers, visualized as a vertical cross-section along the motion path, were consistently prepared and photographed for all experiments. Image analysis was undertaken with MATLAB software to scale images and extract graphical data. The highest deformation, with a value of 60.86 mm, is associated with the interaction of a pneumatic wheel with a force of 4 kN, while the lowest deformation occurs when the soil interacts with a track wheel with a force of 2 kN, with a value of 25.05 mm. Furthermore, the fitted surfaces obtained using the optimization algorithm showed good convergence with the experimental data, with R<sup>2</sup> values of 0.9783 and 0.9516 for the pneumatic tire and tracked tire, respectively. The results demonstrated that the TRR model performs well in accurately predicting soil deformation induced by various types of wheels. A comparison between soil deformations caused by track wheels and pneumatic wheels revealed that track wheels result in less deformation and disturbance, particularly in the upper soil layers. These findings underscore the importance of considering the type of traction device and loading conditions when assessing soil deformation in agricultural environments.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terrain classification and rock abundance analysis at Utopia Planitia using Zhurong image data based on deep learning algorithms 基于深度学习算法,利用祝融影像数据对乌托邦行星进行地形分类和岩石丰度分析
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-09 DOI: 10.1016/j.jterra.2024.101022
{"title":"Terrain classification and rock abundance analysis at Utopia Planitia using Zhurong image data based on deep learning algorithms","authors":"","doi":"10.1016/j.jterra.2024.101022","DOIUrl":"10.1016/j.jterra.2024.101022","url":null,"abstract":"<div><div>The complexity of image scene information presents challenges for the trafficability assessment and path planning of Mars rovers. To ensure the operational safety of Mars rovers and extract terrain features from complex image scenes, this paper develops an end-to-end deep learning model, using the deep convolutional neural networks ResNet50 and DeepLabV3 + as the framework, with images from the Zhurong rover’s navigation camera as the training and test datasets. A deep learning model suitable for classification and segmentation of terrain in the Mars Utopia Planitia region has been established and applied to planetary geology research. The classification accuracy of model exceeds 83.90 % and segmentation accuracy exceeds 80 %. Subsequently, an analysis of 1309 raw images from the navigation camera yielded 203,744 individual estimates of rock abundance, the model evaluates the rock abundance in the Utopia Planitia region, where the Zhurong rover is located, at 10.94 %. The terrain classification model proposed in this study provides both engineering and scientific value for future rovers on the Utopia Planitia.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tire sinkage measurement and entry angle calculation using stereo cameras 使用立体相机测量轮胎下沉量并计算进入角
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-10-07 DOI: 10.1016/j.jterra.2024.101019
{"title":"Tire sinkage measurement and entry angle calculation using stereo cameras","authors":"","doi":"10.1016/j.jterra.2024.101019","DOIUrl":"10.1016/j.jterra.2024.101019","url":null,"abstract":"<div><div>In the modern world the use of autonomous vehicles is growing more and more common. There are many applications for autonomous vehicles on deformable terrain, such as in military, farming, and mining but the problem with most established autonomous vehicle models is that they do not take into account the effect the terrain has on vehicle performance. To be able to accurately include these values in the vehicle model, they need to be directly sensed or estimated. One of the most valuable of these values is the tire sinkage. Tire sinkage is very important when it comes to terrain-vehicle interaction. The slip-sinkage relationship is an important factor in tractive performance. This paper is part of a larger project that is working on autonomy in conditions with deformable terrain and this paper presents on the methods employed to measure and find important values for the terramechanics of the model. This study specifically focuses on measuring the rut depth left behind after a tire travels over the terrain using a set of two stereo cameras. The sinkage is then used to be able to find the entry angle of the tire in the terrain.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural recovery of different soil types after passes by wheeled military truck: Implications for soil as a ground for follow-on mobility operations 轮式军用卡车通过后不同土壤类型的自然恢复:土壤作为后续机动作战地面的意义
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-09-27 DOI: 10.1016/j.jterra.2024.101017
{"title":"Natural recovery of different soil types after passes by wheeled military truck: Implications for soil as a ground for follow-on mobility operations","authors":"","doi":"10.1016/j.jterra.2024.101017","DOIUrl":"10.1016/j.jterra.2024.101017","url":null,"abstract":"<div><div>The trafficking of off-road military vehicles generates disturbed soil conditions. Thus, former active combat areas can have a serious effect on subsequent operations. More precisely, an uneven soil surface will remarkably increase the vibration of travelling vehicles, and over-compacted as well as displaced soil layers affect soil water dynamics that, in turn, have a long-lasting effect on soil strength. In addition, soil as a habitat for plants must provide air, water, and nutrients for the plants to grow. Luckily, soil can naturally recover from being disturbed thanks to freezing-thawing cycles, wetting–drying cycles, and biological activity. However, the rate of recovery depends on the physical parameters of soil. The objective of this study was to monitor and summarize the natural recovery rate of soils. As an experiment, single pass and repeated passes with military trucks (total weight 70 kN) were carried out. The ruts that formed were monitored and soil samples were collected up to 2 years after wheeling. The rut depth, cone index values, bulk density, soil moisture content as well as field-saturated hydraulic conductivity were measured and soil pore size distribution was determined in a laboratory during the entire studied recovery period. The results about the natural recovery on different soils are presented herein.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tractive performance of rigid wheel in granular media using coarse-scale DEM models 利用粗尺度 DEM 模型实现刚性车轮在颗粒介质中的牵引性能
IF 2.4 3区 工程技术
Journal of Terramechanics Pub Date : 2024-09-26 DOI: 10.1016/j.jterra.2024.101016
{"title":"Tractive performance of rigid wheel in granular media using coarse-scale DEM models","authors":"","doi":"10.1016/j.jterra.2024.101016","DOIUrl":"10.1016/j.jterra.2024.101016","url":null,"abstract":"<div><div>Understanding interactions between wheel and granular media in variable loading conditions is critical for prediction of mobility of wheeled vehicles in off-road environments. The discrete element method (DEM) is routinely used for modeling vehicle off-road performance, but the method’s accuracy is often not fully established.</div><div>In this work, the DEM modeling accuracy is assessed by the comparison of ten DEM soil models with laboratory soil-bin measurements of net traction, gross traction, and sinkage of a wheel operating in sand. Laboratory soil-bin measurements, serving as reference for DEM simulations, were taken from physical experiments by <span><span>Shinone et al. (2010)</span></span>, examining a 165/60R13 wheel with circumferential velocity of 97.6 mm/s and vertical contact load of 980 N in varying slip conditions.</div><div>The set of ten DEM models was selected from the Generic EDEM Material Model database from Altair®’s EDEM™ software package, choosing the materials matching the bulk density and angle of repose for dry sand.</div><div>Given the large particle size and no additional calibration of the DEM models, finding overall reasonable match with the gross traction from lab measurements and identifying a material predicting the net traction with a satisfiable accuracy encourages further use, refinement, and calibration of the DEM-based soil models.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信