{"title":"A novel soil stress estimation method of wheel-soil interaction using photoelasticity","authors":"Kenji Nagaoka, Yuto Yoshida","doi":"10.1016/j.jterra.2025.101076","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a new approach to understanding the wheel-soil interaction, which is an indirect estimation method of soil stress distributions beneath a traveling wheel soil using a photoelastic method. Thus far, several photoelastic methods have been discussed for the wheel-soil terramechanics, but it is difficult for the previous configuration to simulate the dynamic behaviors of natural soil, e.g., compaction, failure, or wheel ruts. Accordingly, achieving both the stress visualization and the dynamic behaviors of soil is a significant challenge to make the photoelastic method more practical. To cope with this challenging issue, we have developed a novel experimental setup consisting of a photoelastic wheel (top layer), soil (middle layer), and a photoelastic plate (bottom layer). By vertically sandwiching the soil between the photoelastic wheel and plate, the soil stresses can be indirectly estimated to satisfy the boundary stress conditions. To achieve this approach, we conducted calibration tests of the photoelastic wheel and plate, and then identified the force vector and contact patch corresponding to the visualized stresses. In this paper, we demonstrate that it is possible to indirectly estimate how the stress propagates and attenuates in the soil by the proposed method.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"120 ","pages":"Article 101076"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489825000321","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new approach to understanding the wheel-soil interaction, which is an indirect estimation method of soil stress distributions beneath a traveling wheel soil using a photoelastic method. Thus far, several photoelastic methods have been discussed for the wheel-soil terramechanics, but it is difficult for the previous configuration to simulate the dynamic behaviors of natural soil, e.g., compaction, failure, or wheel ruts. Accordingly, achieving both the stress visualization and the dynamic behaviors of soil is a significant challenge to make the photoelastic method more practical. To cope with this challenging issue, we have developed a novel experimental setup consisting of a photoelastic wheel (top layer), soil (middle layer), and a photoelastic plate (bottom layer). By vertically sandwiching the soil between the photoelastic wheel and plate, the soil stresses can be indirectly estimated to satisfy the boundary stress conditions. To achieve this approach, we conducted calibration tests of the photoelastic wheel and plate, and then identified the force vector and contact patch corresponding to the visualized stresses. In this paper, we demonstrate that it is possible to indirectly estimate how the stress propagates and attenuates in the soil by the proposed method.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.