{"title":"JMJ volume 22 issue 2 Cover and Front matter","authors":"","doi":"10.1017/s1474748023000051","DOIUrl":"https://doi.org/10.1017/s1474748023000051","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":"f1 - f2"},"PeriodicalIF":0.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49417751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JMJ volume 22 issue 1 Cover and Front matter","authors":"","doi":"10.1017/s1474748023000038","DOIUrl":"https://doi.org/10.1017/s1474748023000038","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":"f1 - f2"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47576544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JMJ volume 22 issue 1 Cover and Back matter","authors":"","doi":"10.1017/s147474802300004x","DOIUrl":"https://doi.org/10.1017/s147474802300004x","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":"b1 - b2"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45414089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SPECIAL VALUES OF ZETA-FUNCTIONS OF REGULAR SCHEMES","authors":"S. Lichtenbaum","doi":"10.1017/s1474748022000524","DOIUrl":"https://doi.org/10.1017/s1474748022000524","url":null,"abstract":"\u0000 We formulate a conjecture on the special values of zeta functions of regular arithmetic schemes in terms of Weil-étale cohomology…","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47952591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Italiano, Bruno Martelli, Matteo Migliorini
{"title":"HYPERBOLIC MANIFOLDS THAT FIBRE ALGEBRAICALLY UP TO DIMENSION 8","authors":"Giovanni Italiano, Bruno Martelli, Matteo Migliorini","doi":"10.1017/s1474748022000536","DOIUrl":"https://doi.org/10.1017/s1474748022000536","url":null,"abstract":"We construct some cusped finite-volume hyperbolic <jats:italic>n</jats:italic>-manifolds <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline1.png\" /> <jats:tex-math> $M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that fibre algebraically in all the dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline2.png\" /> <jats:tex-math> $5leq n leq 8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. That is, there is a surjective homomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline3.png\" /> <jats:tex-math> $pi _1(M^n) to {mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with finitely generated kernel. The kernel is also finitely presented in the dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline4.png\" /> <jats:tex-math> $n=7, 8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and this leads to the first examples of hyperbolic <jats:italic>n</jats:italic>-manifolds <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline5.png\" /> <jats:tex-math> $widetilde M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose fundamental group is finitely presented but not of finite type. These <jats:italic>n</jats:italic>-manifolds <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline6.png\" /> <jats:tex-math> $widetilde M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> have infinitely many cusps of maximal rank and, hence, infinite Betti number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline7.png\" /> <jats:tex-math> $b_{n-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. They cover the finite-volume manifold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline8.png\" /> <jats:tex-math> $M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain these examples by assigning some appropriate <jats:italic>colours</jats:italic> and <jats:italic>states</jats:italic> to a family of right-angled hyperbolic polytopes <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S14","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1366 ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JMJ volume 21 issue 6 Cover and Back matter","authors":"","doi":"10.1017/s1474748022000512","DOIUrl":"https://doi.org/10.1017/s1474748022000512","url":null,"abstract":"","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":"b1 - b2"},"PeriodicalIF":0.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47230188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariyan Javanpeykar, Daniel Loughran, Siddharth Mathur
{"title":"GOOD REDUCTION AND CYCLIC COVERS","authors":"Ariyan Javanpeykar, Daniel Loughran, Siddharth Mathur","doi":"10.1017/s1474748022000457","DOIUrl":"https://doi.org/10.1017/s1474748022000457","url":null,"abstract":"We prove finiteness results for sets of varieties over number fields with good reduction outside a given finite set of places using cyclic covers. We obtain a version of the Shafarevich conjecture for weighted projective surfaces, double covers of abelian varieties and reduce the Shafarevich conjecture for hypersurfaces to the case of hypersurfaces of high dimension. These are special cases of a general setup for integral points on moduli stacks of cyclic covers, and our arithmetic results are achieved via a version of the Chevalley–Weil theorem for stacks.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1340 ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ON MORPHISMS KILLING WEIGHTS AND STABLE HUREWICZ-TYPE THEOREMS","authors":"M. Bondarko","doi":"10.1017/s1474748022000470","DOIUrl":"https://doi.org/10.1017/s1474748022000470","url":null,"abstract":"\u0000\t <jats:p>For a weight structure <jats:italic>w</jats:italic> on a triangulated category <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline1.png\" />\u0000\t\t<jats:tex-math>\u0000$underline {C}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> we prove that the corresponding <jats:italic>weight complex</jats:italic> functor and some other (<jats:italic>weight-exact</jats:italic>) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline2.png\" />\u0000\t\t<jats:tex-math>\u0000$w=w^{sph}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> (the <jats:italic>spherical</jats:italic> weight structure on <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline3.png\" />\u0000\t\t<jats:tex-math>\u0000$SH$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula>), we deduce the following converse to the stable Hurewicz theorem: <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline4.png\" />\u0000\t\t<jats:tex-math>\u0000$H^{sing}_{i}(M)={0}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> for all <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline5.png\" />\u0000\t\t<jats:tex-math>\u0000$i<0$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> if and only if <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline6.png\" />\u0000\t\t<jats:tex-math>\u0000$Min SH$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.</jats:p>\u0000\t <jats:p>The main idea is to study <jats:italic>M</jats:italic> that has <jats:italic>no weights</jats:italic><jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline7.png\" />\u0000\t\t<jats:tex-math>\u0000$m,dots ,n$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000\t </jats:inline-formula> (‘in the middle’). For <jats:inline-formula>\u0000\t <jats:alternatives>\u0000\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline8.png\" />\u0000\t\t<jats:tex-math>\u0000$w=w^{sph}$\u0000</jats:tex-math>\u0000\t </jats:alternatives>\u0000","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49382175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS","authors":"Thomas H. Geisser, B. Morin","doi":"10.1017/s1474748022000469","DOIUrl":"https://doi.org/10.1017/s1474748022000469","url":null,"abstract":"\u0000 We define cohomological complexes of locally compact abelian groups associated with varieties over p-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic cohomology groups.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44682320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"REAL TOPOLOGICAL HOCHSCHILD HOMOLOGY OF SCHEMES","authors":"J. Hornbostel, Doosung Park","doi":"10.1017/s1474748023000178","DOIUrl":"https://doi.org/10.1017/s1474748023000178","url":null,"abstract":"\u0000 We prove that real topological Hochschild homology \u0000 \u0000 \u0000 \u0000$mathrm {THR}$\u0000\u0000 \u0000 for schemes with involution satisfies base change and descent for the \u0000 \u0000 \u0000 \u0000${mathbb {Z}/2}$\u0000\u0000 \u0000 -isovariant étale topology. As an application, we provide computations for the projective line (with and without involution) and the higher-dimensional projective spaces.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44081435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}