HYPERBOLIC MANIFOLDS THAT FIBRE ALGEBRAICALLY UP TO DIMENSION 8

IF 1.1 2区 数学 Q1 MATHEMATICS
Giovanni Italiano, Bruno Martelli, Matteo Migliorini
{"title":"HYPERBOLIC MANIFOLDS THAT FIBRE ALGEBRAICALLY UP TO DIMENSION 8","authors":"Giovanni Italiano, Bruno Martelli, Matteo Migliorini","doi":"10.1017/s1474748022000536","DOIUrl":null,"url":null,"abstract":"We construct some cusped finite-volume hyperbolic <jats:italic>n</jats:italic>-manifolds <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline1.png\" /> <jats:tex-math> $M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that fibre algebraically in all the dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline2.png\" /> <jats:tex-math> $5\\leq n \\leq 8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. That is, there is a surjective homomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline3.png\" /> <jats:tex-math> $\\pi _1(M^n) \\to {\\mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with finitely generated kernel. The kernel is also finitely presented in the dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline4.png\" /> <jats:tex-math> $n=7, 8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and this leads to the first examples of hyperbolic <jats:italic>n</jats:italic>-manifolds <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline5.png\" /> <jats:tex-math> $\\widetilde M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose fundamental group is finitely presented but not of finite type. These <jats:italic>n</jats:italic>-manifolds <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline6.png\" /> <jats:tex-math> $\\widetilde M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> have infinitely many cusps of maximal rank and, hence, infinite Betti number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline7.png\" /> <jats:tex-math> $b_{n-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. They cover the finite-volume manifold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline8.png\" /> <jats:tex-math> $M^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain these examples by assigning some appropriate <jats:italic>colours</jats:italic> and <jats:italic>states</jats:italic> to a family of right-angled hyperbolic polytopes <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline9.png\" /> <jats:tex-math> $P^5, \\ldots , P^8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and then applying some arguments of Jankiewicz, Norin and Wise [18] and Bestvina and Brady [7]. We exploit in an essential way the remarkable properties of the Gosset polytopes dual to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline10.png\" /> <jats:tex-math> $P^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the algebra of integral octonions for the crucial dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000536_inline11.png\" /> <jats:tex-math> $n=7,8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"1366 ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000536","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct some cusped finite-volume hyperbolic n-manifolds $M^n$ that fibre algebraically in all the dimensions $5\leq n \leq 8$ . That is, there is a surjective homomorphism $\pi _1(M^n) \to {\mathbb {Z}}$ with finitely generated kernel. The kernel is also finitely presented in the dimensions $n=7, 8$ , and this leads to the first examples of hyperbolic n-manifolds $\widetilde M^n$ whose fundamental group is finitely presented but not of finite type. These n-manifolds $\widetilde M^n$ have infinitely many cusps of maximal rank and, hence, infinite Betti number $b_{n-1}$ . They cover the finite-volume manifold $M^n$ . We obtain these examples by assigning some appropriate colours and states to a family of right-angled hyperbolic polytopes $P^5, \ldots , P^8$ , and then applying some arguments of Jankiewicz, Norin and Wise [18] and Bestvina and Brady [7]. We exploit in an essential way the remarkable properties of the Gosset polytopes dual to $P^n$ , and the algebra of integral octonions for the crucial dimensions $n=7,8$ .
代数上可达8维的双曲流形
我们构造了一些在所有维度$5\leq n \leq 8$上都具有代数纤维的顶形有限体积双曲n流形$M^n$。即存在一个有限生成核的满射同态$\pi _1(M^n) \to {\mathbb {Z}}$。核也在维度$n=7, 8$中有限地表示,这导致了双曲n流形$\widetilde M^n$的第一个例子,其基本群是有限地表示的,但不是有限类型。这些n流形$\widetilde M^n$有无穷多个最大秩顶点,因此有无穷个Betti数$b_{n-1}$。它们涵盖了有限体积的歧管$M^n$。我们通过给一组直角双曲多面体$P^5, \ldots , P^8$分配一些适当的颜色和状态,然后应用Jankiewicz, Norin和Wise[18]和Bestvina和Brady[7]的一些论点得到这些例子。我们以一种重要的方式利用了Gosset多面体对偶$P^n$的显著性质,以及关键维$n=7,8$的积分八元代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信