{"title":"ON MORPHISMS KILLING WEIGHTS AND STABLE HUREWICZ-TYPE THEOREMS","authors":"M. Bondarko","doi":"10.1017/s1474748022000470","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For a weight structure <jats:italic>w</jats:italic> on a triangulated category <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline1.png\" />\n\t\t<jats:tex-math>\n$\\underline {C}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> we prove that the corresponding <jats:italic>weight complex</jats:italic> functor and some other (<jats:italic>weight-exact</jats:italic>) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline2.png\" />\n\t\t<jats:tex-math>\n$w=w^{sph}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (the <jats:italic>spherical</jats:italic> weight structure on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline3.png\" />\n\t\t<jats:tex-math>\n$SH$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>), we deduce the following converse to the stable Hurewicz theorem: <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline4.png\" />\n\t\t<jats:tex-math>\n$H^{sing}_{i}(M)=\\{0\\}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for all <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline5.png\" />\n\t\t<jats:tex-math>\n$i<0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> if and only if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline6.png\" />\n\t\t<jats:tex-math>\n$M\\in SH$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.</jats:p>\n\t <jats:p>The main idea is to study <jats:italic>M</jats:italic> that has <jats:italic>no weights</jats:italic><jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline7.png\" />\n\t\t<jats:tex-math>\n$m,\\dots ,n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (‘in the middle’). For <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline8.png\" />\n\t\t<jats:tex-math>\n$w=w^{sph}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, this is the case if there exists a distinguished triangle <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline9.png\" />\n\t\t<jats:tex-math>\n$LM\\to M\\to RM$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline10.png\" />\n\t\t<jats:tex-math>\n$RM$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is an <jats:italic>n</jats:italic>-connected spectrum and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline11.png\" />\n\t\t<jats:tex-math>\n$LM$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is an <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline12.png\" />\n\t\t<jats:tex-math>\n$m-1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula><jats:italic>-skeleton</jats:italic> (of <jats:italic>M</jats:italic>) in the sense of Margolis’s definition; this happens whenever <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline13.png\" />\n\t\t<jats:tex-math>\n$H^{sing}_i(M)=\\{0\\}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline14.png\" />\n\t\t<jats:tex-math>\n$m\\le i\\le n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline15.png\" />\n\t\t<jats:tex-math>\n$H^{sing}_{m-1}(M)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is a free abelian group. We also consider morphisms that <jats:italic>kill weights</jats:italic><jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline16.png\" />\n\t\t<jats:tex-math>\n$m,\\dots ,n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>; those ‘send <jats:italic>n</jats:italic>-<jats:italic>w</jats:italic>-skeleta into <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline17.png\" />\n\t\t<jats:tex-math>\n$m-1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-<jats:italic>w</jats:italic>-skeleta’.</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000470","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
For a weight structure w on a triangulated category
$\underline {C}$
we prove that the corresponding weight complex functor and some other (weight-exact) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case
$w=w^{sph}$
(the spherical weight structure on
$SH$
), we deduce the following converse to the stable Hurewicz theorem:
$H^{sing}_{i}(M)=\{0\}$
for all
$i<0$
if and only if
$M\in SH$
is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.The main idea is to study M that has no weights
$m,\dots ,n$
(‘in the middle’). For
$w=w^{sph}$
, this is the case if there exists a distinguished triangle
$LM\to M\to RM$
, where
$RM$
is an n-connected spectrum and
$LM$
is an
$m-1$
-skeleton (of M) in the sense of Margolis’s definition; this happens whenever
$H^{sing}_i(M)=\{0\}$
for
$m\le i\le n$
and
$H^{sing}_{m-1}(M)$
is a free abelian group. We also consider morphisms that kill weights
$m,\dots ,n$
; those ‘send n-w-skeleta into
$m-1$
-w-skeleta’.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.