ON MORPHISMS KILLING WEIGHTS AND STABLE HUREWICZ-TYPE THEOREMS

IF 1.1 2区 数学 Q1 MATHEMATICS
M. Bondarko
{"title":"ON MORPHISMS KILLING WEIGHTS AND STABLE HUREWICZ-TYPE THEOREMS","authors":"M. Bondarko","doi":"10.1017/s1474748022000470","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>For a weight structure <jats:italic>w</jats:italic> on a triangulated category <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline1.png\" />\n\t\t<jats:tex-math>\n$\\underline {C}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> we prove that the corresponding <jats:italic>weight complex</jats:italic> functor and some other (<jats:italic>weight-exact</jats:italic>) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline2.png\" />\n\t\t<jats:tex-math>\n$w=w^{sph}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (the <jats:italic>spherical</jats:italic> weight structure on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline3.png\" />\n\t\t<jats:tex-math>\n$SH$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>), we deduce the following converse to the stable Hurewicz theorem: <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline4.png\" />\n\t\t<jats:tex-math>\n$H^{sing}_{i}(M)=\\{0\\}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for all <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline5.png\" />\n\t\t<jats:tex-math>\n$i<0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> if and only if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline6.png\" />\n\t\t<jats:tex-math>\n$M\\in SH$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.</jats:p>\n\t <jats:p>The main idea is to study <jats:italic>M</jats:italic> that has <jats:italic>no weights</jats:italic><jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline7.png\" />\n\t\t<jats:tex-math>\n$m,\\dots ,n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> (‘in the middle’). For <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline8.png\" />\n\t\t<jats:tex-math>\n$w=w^{sph}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, this is the case if there exists a distinguished triangle <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline9.png\" />\n\t\t<jats:tex-math>\n$LM\\to M\\to RM$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline10.png\" />\n\t\t<jats:tex-math>\n$RM$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is an <jats:italic>n</jats:italic>-connected spectrum and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline11.png\" />\n\t\t<jats:tex-math>\n$LM$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is an <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline12.png\" />\n\t\t<jats:tex-math>\n$m-1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula><jats:italic>-skeleton</jats:italic> (of <jats:italic>M</jats:italic>) in the sense of Margolis’s definition; this happens whenever <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline13.png\" />\n\t\t<jats:tex-math>\n$H^{sing}_i(M)=\\{0\\}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline14.png\" />\n\t\t<jats:tex-math>\n$m\\le i\\le n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline15.png\" />\n\t\t<jats:tex-math>\n$H^{sing}_{m-1}(M)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is a free abelian group. We also consider morphisms that <jats:italic>kill weights</jats:italic><jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline16.png\" />\n\t\t<jats:tex-math>\n$m,\\dots ,n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>; those ‘send <jats:italic>n</jats:italic>-<jats:italic>w</jats:italic>-skeleta into <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748022000470_inline17.png\" />\n\t\t<jats:tex-math>\n$m-1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-<jats:italic>w</jats:italic>-skeleta’.</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000470","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For a weight structure w on a triangulated category $\underline {C}$ we prove that the corresponding weight complex functor and some other (weight-exact) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case $w=w^{sph}$ (the spherical weight structure on $SH$ ), we deduce the following converse to the stable Hurewicz theorem: $H^{sing}_{i}(M)=\{0\}$ for all $i<0$ if and only if $M\in SH$ is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement. The main idea is to study M that has no weights $m,\dots ,n$ (‘in the middle’). For $w=w^{sph}$ , this is the case if there exists a distinguished triangle $LM\to M\to RM$ , where $RM$ is an n-connected spectrum and $LM$ is an $m-1$ -skeleton (of M) in the sense of Margolis’s definition; this happens whenever $H^{sing}_i(M)=\{0\}$ for $m\le i\le n$ and $H^{sing}_{m-1}(M)$ is a free abelian group. We also consider morphisms that kill weights $m,\dots ,n$ ; those ‘send n-w-skeleta into $m-1$ -w-skeleta’.
关于态射杀权与稳定HUREWICZ型定理
对于三角范畴$\dunderline{C}$上的权结构w,我们证明了相应的权复函子和其他一些(权精确)函子是“保守到权退化对象”;这改进了早期的保守性公式。在$w=w^{sph}$($SH$上的球权结构)的情况下,我们推导出稳定Hurewicz定理的以下逆式:$H^{sing}_{i} 对于所有$i,(M)=\{0\}$当且仅当SH$中的$M\是连接谱的非循环扩展。我们还证明了这一说法的一个模棱两可的版本。主要思想是研究没有权重$M,\dots,n$(“在中间”)的M。对于$w=w^{sph}$,如果存在一个可分辨三角形$LM\到M\到RM$,则情况就是这样,其中$RM$是n连通谱,$LM$是Margolis定义意义上的(M的)$M-1$骨架;每当$H^{sing}_i(M) =$M\le i\le n$和$H的\{0\}$^{sing}_{m-1}(m)$是一个自由阿贝尔群。我们还考虑了杀死权重$m,\dots,n$的态射;那些“把n-w-skeleta变成$m-1$-w-seleta”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信