{"title":"An optimal support function related to the strong openness conjecture","authors":"Q. Guan, Zheng Yuan","doi":"10.2969/jmsj/87048704","DOIUrl":"https://doi.org/10.2969/jmsj/87048704","url":null,"abstract":". In the present article, we obtain an optimal support function of weighted L 2 integrations on superlevel sets of psh weights, which implies the strong openness property of multiplier ideal sheaves.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45225667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large deviations for values of $L$-functions attached to cusp forms in the level aspect","authors":"Masahiro Mine","doi":"10.2969/jmsj/88888888","DOIUrl":"https://doi.org/10.2969/jmsj/88888888","url":null,"abstract":"We study the distribution of values of automorphic L-functions in a family of holomorphic cusp forms with prime level. We prove an asymptotic formula for a certain density function closely related to this value-distribution. The formula is applied to estimate large values of L-functions.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42146861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localization formulas of cohomology intersection numbers","authors":"Saiei-Jaeyeong Matsubara-Heo","doi":"10.2969/jmsj/87738773","DOIUrl":"https://doi.org/10.2969/jmsj/87738773","url":null,"abstract":"We revisit the localization formulas of cohomology intersection numbers associated to a logarithmic connection. The main contribution of this paper is threefold: we prove the localization formula of the cohomology intersection number of logarithmic forms in terms of residue of a connection; we prove that the leading term of the Laurent expansion of the cohomology intersection number is Grothendieck residue when the connection is hypergeometric; and we prove that the leading term of stringy integral discussed by Arkani-Hamed, He and Lam is nothing but the self-cohomology intersection number of the canonical form.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49506370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the positivity of the dimension of the global sections of\u0000 adjoint bundle for quasi-polarized manifold with numerically trivial canonical bundle","authors":"Y. Fukuma","doi":"10.2969/JMSJ/84588458","DOIUrl":"https://doi.org/10.2969/JMSJ/84588458","url":null,"abstract":"Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43339968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}