{"title":"Klein-Gordon方程的一些明显的零形式估计","authors":"Jayson Cunanan, Shobu Shiraki","doi":"10.2969/jmsj/86418641","DOIUrl":null,"url":null,"abstract":"We establish a sharp bilinear estimate for the Klein–Gordon propagator in the spirit of recent work of Beltran–Vega. Our approach is inspired by work in the setting of the wave equation due to Bez, Jeavons and Ozawa. As a consequence of our main bilinear estimate, we deduce several sharp estimates of null-form type and recover some sharp Strichartz estimates found by Quilodrán and Jeavons.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some sharp null-form type estimates for the Klein–Gordon equation\",\"authors\":\"Jayson Cunanan, Shobu Shiraki\",\"doi\":\"10.2969/jmsj/86418641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a sharp bilinear estimate for the Klein–Gordon propagator in the spirit of recent work of Beltran–Vega. Our approach is inspired by work in the setting of the wave equation due to Bez, Jeavons and Ozawa. As a consequence of our main bilinear estimate, we deduce several sharp estimates of null-form type and recover some sharp Strichartz estimates found by Quilodrán and Jeavons.\",\"PeriodicalId\":49988,\"journal\":{\"name\":\"Journal of the Mathematical Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mathematical Society of Japan\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/86418641\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86418641","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some sharp null-form type estimates for the Klein–Gordon equation
We establish a sharp bilinear estimate for the Klein–Gordon propagator in the spirit of recent work of Beltran–Vega. Our approach is inspired by work in the setting of the wave equation due to Bez, Jeavons and Ozawa. As a consequence of our main bilinear estimate, we deduce several sharp estimates of null-form type and recover some sharp Strichartz estimates found by Quilodrán and Jeavons.
期刊介绍:
The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).