Calabi–Yau structure and Bargmann type transformation on the Cayley projective plane

Pub Date : 2021-01-19 DOI:10.2969/jmsj/86638663
Kurando Baba, Kenro Furutani
{"title":"Calabi–Yau structure and Bargmann type transformation on the Cayley projective plane","authors":"Kurando Baba, Kenro Furutani","doi":"10.2969/jmsj/86638663","DOIUrl":null,"url":null,"abstract":"Our purposes are to show the existence of a Calabi-Yau structure on the punctured cotangent bundle T ∗ 0 (P 2 O) of the Cayley projective plane P O and to construct a Bargmann type transformation between the L2-space on P 2 O and a space of holomorphic functions on T ∗ 0 (P 2 O), which corresponds to the Fock space in the case of the original Bargmann transformation. A Kähler structure on T ∗ 0 (P 2 O) was shown by identifying it with a quadrics in the complex space C\\{0} and the natural symplectic form of the cotangent bundle T ∗ 0 (P 2 O) is expressed as a Kähler form. Our method to construct the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the projection map q : T ∗ 0 (P 2 O) −→ P O and the positive complex polarization defined by the Kähler structure. The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at each time. It turn out that for the Cayley projective plane the results are not same with other cases of the original Bargmann transformation for Euclidean space, spheres and other projective spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86638663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our purposes are to show the existence of a Calabi-Yau structure on the punctured cotangent bundle T ∗ 0 (P 2 O) of the Cayley projective plane P O and to construct a Bargmann type transformation between the L2-space on P 2 O and a space of holomorphic functions on T ∗ 0 (P 2 O), which corresponds to the Fock space in the case of the original Bargmann transformation. A Kähler structure on T ∗ 0 (P 2 O) was shown by identifying it with a quadrics in the complex space C\{0} and the natural symplectic form of the cotangent bundle T ∗ 0 (P 2 O) is expressed as a Kähler form. Our method to construct the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the projection map q : T ∗ 0 (P 2 O) −→ P O and the positive complex polarization defined by the Kähler structure. The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at each time. It turn out that for the Cayley projective plane the results are not same with other cases of the original Bargmann transformation for Euclidean space, spheres and other projective spaces.
分享
查看原文
Cayley投影平面上的Calabi-Yau结构和Bargmann型变换
我们的目的是证明Cayley投影平面上的刺破余切束T * 0 (p2o)上的Calabi-Yau结构的存在性,并在p2o上的l2空间和T * 0 (p2o)上的全纯函数空间之间构造一个Bargmann型变换,该变换对应于原始Bargmann变换情况下的Fock空间。通过在复空间C\{0}中用二次元识别T * 0 (p2o)上的Kähler结构,并将余切束T * 0 (p2o)的自然辛形式表示为Kähler形式。构造该变换的方法是极化的配对,一个是由投影映射q: T∗0 (P 2o)−→P O给出的自然拉格朗日叶理和由Kähler结构定义的正复极化。该变换用椭圆傅里叶积分算子的一个参数群给出了测地线流的量化,这些算子的正则关系由每次测地线流作用的图定义。结果表明,对于Cayley投影平面,其结果与欧几里德空间、球面和其他投影空间的原始巴格曼变换的其他情况不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信