{"title":"Calabi–Yau structure and Bargmann type transformation on the Cayley projective plane","authors":"Kurando Baba, Kenro Furutani","doi":"10.2969/jmsj/86638663","DOIUrl":null,"url":null,"abstract":"Our purposes are to show the existence of a Calabi-Yau structure on the punctured cotangent bundle T ∗ 0 (P 2 O) of the Cayley projective plane P O and to construct a Bargmann type transformation between the L2-space on P 2 O and a space of holomorphic functions on T ∗ 0 (P 2 O), which corresponds to the Fock space in the case of the original Bargmann transformation. A Kähler structure on T ∗ 0 (P 2 O) was shown by identifying it with a quadrics in the complex space C\\{0} and the natural symplectic form of the cotangent bundle T ∗ 0 (P 2 O) is expressed as a Kähler form. Our method to construct the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the projection map q : T ∗ 0 (P 2 O) −→ P O and the positive complex polarization defined by the Kähler structure. The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at each time. It turn out that for the Cayley projective plane the results are not same with other cases of the original Bargmann transformation for Euclidean space, spheres and other projective spaces.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86638663","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our purposes are to show the existence of a Calabi-Yau structure on the punctured cotangent bundle T ∗ 0 (P 2 O) of the Cayley projective plane P O and to construct a Bargmann type transformation between the L2-space on P 2 O and a space of holomorphic functions on T ∗ 0 (P 2 O), which corresponds to the Fock space in the case of the original Bargmann transformation. A Kähler structure on T ∗ 0 (P 2 O) was shown by identifying it with a quadrics in the complex space C\{0} and the natural symplectic form of the cotangent bundle T ∗ 0 (P 2 O) is expressed as a Kähler form. Our method to construct the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the projection map q : T ∗ 0 (P 2 O) −→ P O and the positive complex polarization defined by the Kähler structure. The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at each time. It turn out that for the Cayley projective plane the results are not same with other cases of the original Bargmann transformation for Euclidean space, spheres and other projective spaces.
期刊介绍:
The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).