On a density property of the residual order of $a \pmod{pq}$

Pub Date : 2021-04-01 DOI:10.2969/JMSJ/82968296
L. Murata
{"title":"On a density property of the residual order of $a \\pmod{pq}$","authors":"L. Murata","doi":"10.2969/JMSJ/82968296","DOIUrl":null,"url":null,"abstract":"We consider a distribution property of the residual order (the multiplicative order) of the residue class $a \\hspace{-.4em} \\pmod{pq}$. It is known that the residual order fluctuates irregularly and increases quite rapidly. We are interested in how the residual orders $a \\hspace{-.4em} \\pmod{pq}$ distribute modulo 4 when we fix $a$ and let $p$ and $q$ vary. In this paper we consider the set $S(x) = \\{(p, q); p, q \\ \\text{are distinct primes,} \\ pq \\leq x \\}$, and calculate the natural density of the set $\\{(p, q) \\in S(x); \\ \\text{the residual order of} \\ a \\hspace{-.4em} \\pmod{pq} \\equiv l \\hspace{-.4em} \\pmod{4}\\}$. We show that, under a simple assumption on $a$, these densities are $\\{5/9,\\, 1/18,\\, 1/3,\\, 1/18 \\}$ for $l= \\{0, 1, 2, 3 \\}$, respectively. For $l = 1, 3$ we need Generalized Riemann Hypothesis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/82968296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a distribution property of the residual order (the multiplicative order) of the residue class $a \hspace{-.4em} \pmod{pq}$. It is known that the residual order fluctuates irregularly and increases quite rapidly. We are interested in how the residual orders $a \hspace{-.4em} \pmod{pq}$ distribute modulo 4 when we fix $a$ and let $p$ and $q$ vary. In this paper we consider the set $S(x) = \{(p, q); p, q \ \text{are distinct primes,} \ pq \leq x \}$, and calculate the natural density of the set $\{(p, q) \in S(x); \ \text{the residual order of} \ a \hspace{-.4em} \pmod{pq} \equiv l \hspace{-.4em} \pmod{4}\}$. We show that, under a simple assumption on $a$, these densities are $\{5/9,\, 1/18,\, 1/3,\, 1/18 \}$ for $l= \{0, 1, 2, 3 \}$, respectively. For $l = 1, 3$ we need Generalized Riemann Hypothesis.
分享
查看原文
关于$a\pmod{pq}剩余阶的密度性质$
我们考虑残差类$a\hspace{-.4em}\pmod{pq}$的残差阶(乘法阶)的分布性质。已知残差阶数波动不规则,并且增长非常快。我们感兴趣的是,当我们固定$a$并让$p$和$q$变化时,剩余订单$a\hspace{-.4em}\pmod{pq}$如何以模4分布。在本文中,我们考虑集合$S(x)=\{(p,q);p,q\\text{是不同的素数,}\pq\leq x\}$,并计算了S(x)中集合$\(p,q)\的自然密度;\\text}\a\ hspace{-.4em}\pmod{pq}\equiv l\ hspace}-.4em}\pod{4}$的剩余阶。我们证明,在$a$的一个简单假设下,对于$l=\{0,1,2,3\}$,这些密度分别为$\{5/9,\,1/18,\,1/3,\,1/16}$。对于$l=1,3$,我们需要广义黎曼假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信