Haoyan Shi, Haochen Wang, Minghao Yu, Jianbang Su, Ze Zhao, Tianqi Gao, Qian Zhang, Yingliang Wei
{"title":"Serum trace elements and osteoarthritis: A meta-analysis and Mendelian randomization study","authors":"Haoyan Shi, Haochen Wang, Minghao Yu, Jianbang Su, Ze Zhao, Tianqi Gao, Qian Zhang, Yingliang Wei","doi":"10.1016/j.jtemb.2024.127520","DOIUrl":"10.1016/j.jtemb.2024.127520","url":null,"abstract":"<div><h3>Objective</h3><p>This study aims to establish the correlation between shifts in serum trace element (TE) levels and the progression of osteoarthritis (OA), while also exploring the underlying causal relationship between these variables.</p></div><div><h3>Methods</h3><p>An investigation was conducted, which included a systematic review, a meta-analysis of observational studies, and a two-sample Mendelian randomization (MR) study.</p></div><div><h3>Results</h3><p>This meta-analysis revealed significant differences in serum levels of copper, manganese, cadmium, and selenium between OA patients and healthy controls, after adjusting for heterogeneity. Specifically, significant disparities were observed for copper (SMD 0.118 [95 % <em>CI</em>: 0.061 ∼ 0.175], <em>P</em> < 0.001), manganese (SMD −0.180 [95 % <em>CI</em>: −0.326 ∼ −0.034], <em>P</em> = 0.016), cadmium (SMD 0.227 [95 % <em>CI</em>: 0.131 ∼ 0.322], <em>P</em> < 0.001), and selenium (SMD −0.138 [95 % <em>CI</em>: −0.209 ∼ −0.068], <em>P</em> < 0.001), while zinc levels did not show a significant difference (SMD −0.02 [95 % <em>CI</em>: −0.077 ∼ 0.038], <em>P</em> = 0.503). Further, MR analysis suggested a causal link between genetically predicted serum copper level changes and OA development, but not for other TEs.</p></div><div><h3>Conclusion</h3><p>The study suggests that there is an association between the occurrence of OA and variations in serum levels of copper, manganese, cadmium, and selenium. Elevated serum copper may play a pivotal role. Further research is needed to explore the therapeutic potential of TE level modulation in OA management.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127520"},"PeriodicalIF":3.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0946672X24001408/pdfft?md5=bf9347d54d74b16b9623dc76a3fda78e&pid=1-s2.0-S0946672X24001408-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Sikandar Habib , Sawera Maqaddas , Francesco Fazio , Rim EL Amouri , Ghulam Serwar Shaikh , Abdur Rahim , Kaleem Khan , Javed Ullah , Mohamed Mohany , Vincenzo Parrino , Ahmed Al-Emam
{"title":"Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio","authors":"Syed Sikandar Habib , Sawera Maqaddas , Francesco Fazio , Rim EL Amouri , Ghulam Serwar Shaikh , Abdur Rahim , Kaleem Khan , Javed Ullah , Mohamed Mohany , Vincenzo Parrino , Ahmed Al-Emam","doi":"10.1016/j.jtemb.2024.127523","DOIUrl":"10.1016/j.jtemb.2024.127523","url":null,"abstract":"<div><h3>Background</h3><p>Heavy metal pollution, particularly lead (Pb), poses a significant threat to aquatic ecosystems and their inhabitants, threatening their delicate balance and long-term viability. This study highlights the urgent need to mitigate heavy metal pollution in aquatic ecosystems.</p></div><div><h3>Objective</h3><p>This study investigates Pb(NO<sub>3</sub>)<sub>2</sub> exposure effects on tissue accumulation, behavioral abnormalities, and hemato-biochemical parameters in common carp (<em>Cyprinus carpio</em>), a widely distributed freshwater fish species.</p></div><div><h3>Methodology</h3><p>Fish (115 ± 5.23 g) were exposed to various Pb(NO<sub>3</sub>)<sub>2</sub> concentrations for 10 and 20 days, representing control (0 %), 25 %, 50 %, and 75 % of the LC<sub>50</sub> equivalent to 19.33, 38.66, and 58.0 mg/l, respectively. The standard manual procedure was used for blood sampling. The lead concentration in fish tissue was determined using an atomic absorption spectrophotometer.</p></div><div><h3>Results</h3><p>Results revealed that fish gills showed significant (<em>P < 0.05</em>) increase in Pb(NO<sub>3</sub>)<sub>2</sub> after 10 days, further rising after 20 days. Liver concentrations also rose significantly (<em>P < 0.05</em>) with prolonged exposure and increasing Pb levels. Muscle had lower concentrations. Hematological parameters (RBC, WBC, HB, HCT) decreased with higher Pb(NO<sub>3</sub>)<sub>2</sub> levels. Behavioral and morphological changes were significantly more pronounced in the exposure groups when compared to the control group. Hepatic enzyme activities (AST, ALT), glucose, and lipid levels increased, while total protein decreased.</p></div><div><h3>Conclusions</h3><p>The study highlights Pb(NO<sub>3</sub>)<sub>2</sub> harmful effects on common carp, impacting tissue accumulation, hematological parameters, and biochemical disruptions. It emphasizes the need to monitor and mitigate heavy metal pollution in aquatic environments to safeguard freshwater organisms and ecosystems, and to further increase our understanding of Pb toxicity in freshwater ecosystems.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127523"},"PeriodicalIF":3.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Wu , Anan Li , Tingting Zhang , Weirong Ding , Yujing Wei , Caishui Wan , Bo Ke , Hongbo Cheng , Chenghao Jin , Chunfang Kong
{"title":"The novel prognostic analysis of AML based on ferroptosis and cuproptosis related genes","authors":"Mei Wu , Anan Li , Tingting Zhang , Weirong Ding , Yujing Wei , Caishui Wan , Bo Ke , Hongbo Cheng , Chenghao Jin , Chunfang Kong","doi":"10.1016/j.jtemb.2024.127517","DOIUrl":"10.1016/j.jtemb.2024.127517","url":null,"abstract":"<div><h3>Background</h3><p>Acute myeloid leukemia (AML) is a hematological malignancy. The aim of this research was to develop a ferroptosis and cuproptosis related novel prognostic signature associated with AML.</p></div><div><h3>Methods</h3><p>The ferroptosis and cuproptosis related genes correlated with the prognosis of AML were identified by univariate Cox analysis. The consistent cluster analysis was performed for 150 AML patients in TCGA dataset. The key module genes associated with GSVA score of ferroptosis and cuproptosis were identified by WGCNA. univariate Cox and LASSO regression analysis were adopted to build a ferroptosis and cuproptosis AML prognostic signature. Finally, the expression of five prognostic genes in clinical tissue samples were verified by RT-qPCR.</p></div><div><h3>Results</h3><p>A grand total of 27 FCRGs associated with AML prognosis were identified.Then, two AML sub-types with significantly different survival were obtained. We found 3 significantly differential expressed immune cells (naive CD4 cells, regulatory T cells and resting mast cells) between two risk sub-groups. Meanwhile, ‘IL6 JAK STAT3 signaling’ and ‘P53 pathway’ were enriched in low-risk group. A ferroptosis and cuproptosis related prognostic signature was build based on 8 prognostic genes. RT-qPCR results indicated that there was no significant difference in the expression of OLFML2A and CD109 between AML and normal samples. However, compared to the control group, LGALS1, SOCS1, and RHOC showed significantly lower expression in the AML group.</p></div><div><h3>Conclusion</h3><p>The prognostic signature comprised of OLFML2A, LGALS1, ABCB11, SOCS1, RHOC, CD109, RD3L and PTPN13 based on ferroptosis and cuproptosis was established, which provided theoretical basis for the research of AML.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127517"},"PeriodicalIF":3.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0946672X24001378/pdfft?md5=7fa26c2b83fa0fbf8d7fc5b97e317764&pid=1-s2.0-S0946672X24001378-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Salidroside prevents cadmium chloride-induced DNA damage in human fetal lung fibroblasts","authors":"Yufei Wu , Chuan Sun","doi":"10.1016/j.jtemb.2024.127521","DOIUrl":"10.1016/j.jtemb.2024.127521","url":null,"abstract":"<div><h3>Background</h3><p>Cadmium (Cd) is an environmental pollutant and a heavy metal known for its genotoxic effects, which can lead to cancer and other related diseases. Preventing Cd-induced genotoxicity is crucial; however, there is limited research on this topic. Salidroside (SAL), a phenylpropanoid glycoside isolated from <em>Rhodiola rosea L</em>., is a popular medicinal compound with several health benefits. Nevertheless, its therapeutic effect on Cd-induced genotoxicity remains unexplored.</p></div><div><h3>Methods</h3><p>Human fetal lung fibroblasts were treated with 20 μM Cd<sup>2+</sup> (CdCl<sub>2</sub>) for 12 h and 5–20 μM SAL was used to test the anti-DNA damage effect. DNA damage was evaluated using γH2AX expression and the alkaline comet assay. Intracellular reactive oxygen species (ROS) levels were measured using flow cytometry.</p></div><div><h3>Results</h3><p>Exposure to 20 μM Cd<sup>2+</sup> for 12 h induced significant DNA damage in human fetal lung fibroblasts, and this effect was notably attenuated by SAL treatment. SAL treatment did not decrease ROS levels in cells treated with Cd<sup>2+</sup>.</p></div><div><h3>Conclusion</h3><p>SAL effectively prevented Cd<sup>2+</sup>-induced DNA damage in human fetal lung fibroblasts. However, the underlying mechanism requires further investigation.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127521"},"PeriodicalIF":3.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alyaa Tarek Abd ElAal Mohamed , Mohamed A. Ragheb , Mohamed Refaat Shehata , Ayman Saber Mohamed
{"title":"In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production","authors":"Alyaa Tarek Abd ElAal Mohamed , Mohamed A. Ragheb , Mohamed Refaat Shehata , Ayman Saber Mohamed","doi":"10.1016/j.jtemb.2024.127516","DOIUrl":"10.1016/j.jtemb.2024.127516","url":null,"abstract":"<div><h3>Background</h3><p>Myocardial infarction (MI) is the result of reduced or stopped blood supply to a section of the myocardium. Regardless of its potential effectiveness in the treatment of several types of cancers, doxorubicin (DOX) capabilities are restricted because of its widespread cardiotoxic impact.</p></div><div><h3>Aim</h3><p>In this study, the protective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction in rats is examined.</p></div><div><h3>Methods</h3><p>Zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using X-ray diffraction, transmission electron microscope, and UV-Vis spectral analysis. A total cumulative dose of DOX (18 mg/kg body weight, i.p.) was injected once daily on days 2, 4, 6, 8, 10, and 12 (i.p.) to induce MI in rats. 24 rats were divided into 4 groups; control, MI, and MI treated with two doses of ZnO NPs (45 and 22.5 mg/kg).</p></div><div><h3>Results</h3><p>The treatment with ZnO NPs restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, malondialdehyde, nitric oxide, reduced glutathione, and catalase.The histological investigation revealed that ZnO NPs treated group showed marked improvement in the examined cardiac muscle and liver in numerous sections.The lower dose of ZnO NPs (22.5 mg/kg) was significantly more effective than the higher dose (45 mg/kg).</p></div><div><h3>Conclusion</h3><p>The effect of ZnO NPs against doxorubicin-induced myocardial infarction in rats was assessed and the results revealed a successful cardioprotective potency through enhancing the antioxidant system and stimulating nitric oxide production in myocardial infarcted rats. This work implies that ZnO NPs could serve as promising agents for treating doxorubicin-induced cardiotoxicity.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127516"},"PeriodicalIF":3.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Moll , A. Scheurle , Q. Nawaz , T. Walker , E. Kunisch , T. Renkawitz , AR Boccaccini , F. Westhauser
{"title":"Osteogenic and angiogenic potential of molybdenum-containing mesoporous bioactive glass nanoparticles: An ionic approach to bone tissue engineering","authors":"M. Moll , A. Scheurle , Q. Nawaz , T. Walker , E. Kunisch , T. Renkawitz , AR Boccaccini , F. Westhauser","doi":"10.1016/j.jtemb.2024.127518","DOIUrl":"10.1016/j.jtemb.2024.127518","url":null,"abstract":"<div><p>Biomaterials intended for application in bone tissue engineering (BTE) ideally stimulate osteogenesis and angiogenesis simultaneously, as both mechanisms are of critical importance for successful bone regeneration. Mesoporous bioactive glass nanoparticles (MBGNs) can be tailored towards specific biological needs, for example by addition of ions like Molybdenum (Mo). While Mo has been shown to enhance osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as their ability to form and mature a primitive osseous extracellular matrix (ECM), there are contradictory findings regarding its impact on angiogenesis. In this study, the effects of Mo-MBGNs (mol%: 70 SiO<sub>2</sub>, 25 CaO, 5 MoO<sub>3</sub>) on viability, proliferation, osteogenic differentiation, ECM formation and angiogenic response of BMSCs were compared to undoped MBGNs (in mol%: 70 SiO<sub>2</sub>, 30 CaO) and a control group of BMSCs. Furthermore, a human umbilical vein endothelial cells tube formation assay and a chorioallantoic membrane-assay using fertilized chicken eggs were used to analyze angiogenic properties. Mo-MBGNs were cytocompatible and promoted the proliferation of BMSCs. Furthermore, Mo-MBGNs showed promising osteogenic properties as they enhanced osteogenic differentiation, ECM formation and maturation as well as the gene expression and protein production of relevant osteogenic factors in BMSCs. However, despite the promising outcome on osteogenic properties, the addition of Mo to MBGNs resulted in anti-angiogenic effects. Due to the high relevance of vascularization in-vivo, the anti-angiogenic properties of Mo-MBGNs might hamper their osteogenic properties and therefore might restrict their performance in BTE applications. These limitations can be overcome by the addition of ions with distinct pro-angiogenic properties to the Mo-MBGNs-composition. Due to their promising osteogenic properties, Mo-MBGNs constitute a suitable basis for further research in the field of ionic (growth factor free) BTE.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127518"},"PeriodicalIF":3.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0946672X2400138X/pdfft?md5=3b2be0b6cb9abd899bd3d33371fdfb56&pid=1-s2.0-S0946672X2400138X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kasper Hobin , Lana Abou-Zeid , Iker Basabe Mendizabal , Tineke Van Vrekhem , Marijke Miatton , Bregje D’Haeze , Marta Scarioni , Tim Van Langenhove , Frank Vanhaecke
{"title":"Investigation of the concentration and isotopic composition of Cu, Fe and Zn in human biofluids in the context of Alzheimer’s disease via tandem and multi-collector inductively coupled plasma-mass spectrometry","authors":"Kasper Hobin , Lana Abou-Zeid , Iker Basabe Mendizabal , Tineke Van Vrekhem , Marijke Miatton , Bregje D’Haeze , Marta Scarioni , Tim Van Langenhove , Frank Vanhaecke","doi":"10.1016/j.jtemb.2024.127515","DOIUrl":"10.1016/j.jtemb.2024.127515","url":null,"abstract":"<div><p>Studies on essential trace elements in the context of Alzheimer’s disease (AD) concluded that Cu, Fe and Zn interact with amyloid-β, accelerating plaque formation in the brain. Additionally, Cu and Fe in the vicinity of plaques produce reactive oxygen species (ROS) resulting in oxidative stress, whereas Zn plays a role in the antioxidant defence as a co-factor for antioxidants. In this work, the Cu, Fe and Zn concentrations and isotope ratios were determined in whole blood, blood serum and cerebrospinal fluid of 10 patients diagnosed with AD and 8 control individuals, using tandem (ICP-MS/MS) and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), respectively. In whole blood and blood serum of AD patients, a heavier Cu isotopic composition was observed (significant for whole blood only) compared to controls. Albumin levels in cerebrospinal fluid tend to increase with age, which could indicate an increased leakiness of the blood-brain barrier. In cerebrospinal fluid, a large variability was observed for the Cu and Fe isotope ratios, potentially resulting from that leakiness at the blood-brain barrier. Therefore, potential effects of AD on the concentration and isotopic composition of essential elements in cerebrospinal fluid related to amyloid-β formation could be hidden. Finally, in blood serum, Zn, urea and creatinine concentrations showed an increase with age and showed a significant difference between sexes.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127515"},"PeriodicalIF":3.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geng-dong Chen , Peng-sheng Li , Zi-xing Zhou , Ting-ting Pang , Hai-yan Wang , Xiao-yan Gou , Shao-xin Ye , Dong-xin Lin , Da-zhi Fan , Zheng-ping Liu
{"title":"Associations of maternal serum concentration of iron-related indicators with gestational diabetes mellitus in Chinese: A pilot prospective cohort study","authors":"Geng-dong Chen , Peng-sheng Li , Zi-xing Zhou , Ting-ting Pang , Hai-yan Wang , Xiao-yan Gou , Shao-xin Ye , Dong-xin Lin , Da-zhi Fan , Zheng-ping Liu","doi":"10.1016/j.jtemb.2024.127514","DOIUrl":"10.1016/j.jtemb.2024.127514","url":null,"abstract":"<div><h3>Background</h3><p>We aimed to provide a comprehensive understanding of the associations between iron metabolism and gestational diabetes mellitus (GDM) by examining multiple iron-related indicators.</p></div><div><h3>Methods</h3><p>We conducted a prospective study involving 907 Chinese pregnant women. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum concentrations of iron-related indicators during the first trimester (≤ 14 weeks of gestation). GDM outcomes were measured through oral glucose tolerance tests (OGTT) conducted between weeks 24 and 28 of gestation.</p></div><div><h3>Results</h3><p>Subjects with iron-related indicators below the 10th percentile (except for serum iron and soluble transferrin receptor) had a higher risk of GDM compared to normal subjects (10th-90th percentiles). The ORs (95 %CI; p-value) were 1.88 (1.10, 3.20; P=0.020) for ferritin, 1.88 (1.10, 3.19; P=0.020) for hepcidin. Higher levels of ferritin (> 90th percentile) were associated with a higher risk of abnormal fasting blood glucose, while lower levels (< 10th percentile) of ferritin, hepcidin, and transferrin were associated with a higher risk of one-hour postprandial glucose ≥ 8.6 mmol/L in the OGTT.</p></div><div><h3>Conclusions</h3><p>Lower levels (< 10th percentiles) of several iron-related indicators (ferritin, hepcidin, and transferrin) were associated with a higher risk of GDM and abnormal blood glucose compared to normal subjects.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127514"},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiujuan Zheng , Jianbin Cao , He Wang , Lele Liu , Baiming Jin , Hua Zhang , Mingqi Li , Shijing Nian , Haonan Li , Rui He , Ningning Wang , Xuying Li , Kewei Wang
{"title":"Effects of tauroursodeoxycholate on arsenic-induced hepatic injury in mice: A comparative transcriptomic analysis","authors":"Xiujuan Zheng , Jianbin Cao , He Wang , Lele Liu , Baiming Jin , Hua Zhang , Mingqi Li , Shijing Nian , Haonan Li , Rui He , Ningning Wang , Xuying Li , Kewei Wang","doi":"10.1016/j.jtemb.2024.127512","DOIUrl":"10.1016/j.jtemb.2024.127512","url":null,"abstract":"<div><h3>Background</h3><p>Prolonged exposure to excessive arsenic (As) and its compounds can cause damage to multiple systems, including respiratory, cardiovascular, immune, nervous, and endocrine systems. Manifestations include changes in skin pigmentation, excessive keratosis on palms and soles, gastrointestinal symptoms, and anemia. The liver as an important detoxification organ of the body, is a significant target organ for arsenic toxicity, and liver diseases are common. So far, the molecular mechanism has not been fully elucidated. Evidence suggests that taurodeoxycholic acid (TUDCA) has a protective role in arsenic-induced liver injury. This study aims to reveal potential target genes at the transcriptional level following TUDCA intervention, providing insights for the intervention of arsenic-induced liver injury.</p></div><div><h3>Methods</h3><p>The TUDCA intervention model of arsenic liver injury in C57BL/6 N mice was established. The experiment was divided into two phases and lasted for 24 weeks. The phase I trial (12 weeks) was divided into control, low, middle and high groups according to the dose of As. The phaseⅡtrial (12 weeks) was administered in combination with 10 mg/L sodium arsenite (the first stage high arsenic group) and TUDCA, so subsequent groups was named with H indicating high arsenic. Divide into four groups: control group(C), TUDCA solvent control group(H-Vehicle), TUDCA combined with As group(H-TUDCA), arsenic group (As). As was ingested through free water and TUDCA was administered to mice by gavage at a dose of 0.1 mL/10 g.b.w (100 mg/kg) once a day for 12 weeks. The differential expression gene (DEG) profile was obtained from the second batch of mouse liver tissues by RNA sequencing technology. Comparative transcriptomic analysis methods were used to identify co-varying DEGs between arsenic induction and TUDCA intervention, along with their associated pathways. QRT-PCR was utilized for validation.</p></div><div><h3>Results</h3><p>Transcriptome results showed that 487 DEGs were identified after arsenic induction. TUDCA intervention identified 231 DEGs (p-values < 0.05 and | log2(fold change) | > 1). The comparison of \"AS vs C\" and \"H_TUDCA vs AS\" identified 65 covariant DEGs, and further screened the TUDCA pathways and related genes among these genes,six pathways and 11 genes (<em>Ccl21a, Ccr7, Mdm2, Slc2a4, Akr1b7, Pnpla3, Dusp8, Hspa1a, Cyp7a1, Cybrd1, Trpm6</em>) were obtained. Next, we screened for covariant DEGs among the top 50 potential hub genes in arsenic-induced DEGS, and obtained 7 (<em>Hbb-bs, Hspa1a, Mdm2, Slc2a4, Ptk6, Egr1, and Dusp8</em>). Finally, the intersection of Hub gene and pathway gene was selected as the target genes <em>Dusp8, Hspa1a, Mdm2 and Slc2a4.</em> The sequencing results showed that the mRNA expressions of <em>Dusp8, Hspa1a</em> and <em>Mdm2</em> were significantly increased after arsenic induction, while the expression of <em>Slc2a4</em> was significantly decreased (P<0.0","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127512"},"PeriodicalIF":3.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linalool may have a therapeutic effect on cadmium-induced nephrotoxicity by regulating NF-κB/TNF and GRP78/CHOP signaling pathways","authors":"Sercan Kaya , Tuba Yalçın","doi":"10.1016/j.jtemb.2024.127510","DOIUrl":"10.1016/j.jtemb.2024.127510","url":null,"abstract":"<div><p>Cadmium (Cd) is an environmental pollutant heavy metal with nephrotoxic effect. One of the primary constituents of essential oils is Linalool (Lin), a monoterpene having a variety of pharmacological properties including antimicrobial, anti-inflammatory, and antioxidant effects. The purpose of this study was to ascertain how Lin affected endoplasmic reticulum stress (ERS) and pro-inflammatory mediators in Cd-induced nephrotoxicity. In the experiment, 28 male rats were randomly divided into four equal groups as control (no application), Cd (Cd at a dose of 3 mg/kg for the first 7 days), Cd+Lin (Cd at a dose of 3 mg/kg for the first 7 days and 100 mg/kg/day Lin) and Lin (100 mg/kg/day Lin) (n=7). The experiment was completed on the 15th day after all treatments were performed. Blood serum and kidney tissue samples were used for analyses. Cd-induced histopathological changes, inflammation, oxidative stress, and apoptosis were determined to increase in kidney tissue. However, it was observed that Cd-induced adverse effects in kidney tissue were mainly eliminated by Lin treatment. In conclusion, Lin demonstrated anti-inflammatory, anti-oxidant and anti-apoptotic effects in Cd-induced nephrotoxicity. Therefore, we believe that Lin may represent a high potential therapeutic strategy against renal tissue damage.</p></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127510"},"PeriodicalIF":3.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}