Tristan A. P. Allerton, Skip J. Van Bloem, Raphaël J. Manlay
{"title":"Novel Fires Shift Biological Legacies Away From Natural Regeneration in Caribbean Tropical Dry Forest","authors":"Tristan A. P. Allerton, Skip J. Van Bloem, Raphaël J. Manlay","doi":"10.1111/jvs.70030","DOIUrl":"https://doi.org/10.1111/jvs.70030","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aims</h3>\u0000 \u0000 <p>Understanding ecosystem resilience to environmental change requires evaluating how novel disturbances affect biological legacies that influence regeneration. Legacies that help maintain conditions for recovery may be lost if disturbance regimes change and species lack the necessary adaptive responses. This study assesses the short- and longer-term impacts of fire in Caribbean tropical dry forests with limited burn history to determine their resilience and identify functional traits predicting postfire resprouting strategies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>The study was conducted in tropical dry forests of SW Puerto Rico along a 29-year postfire chronosequence.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We examined community-level measures of structure, composition, diversity, and resprouting of woody plants in sites ranging from 2 months to 29 years postfire, comparing them to mature forests. Additionally, we tested whether functional traits—relative bark thickness, specific leaf area, and tree size—could predict postfire resprouting strategies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Tropical dry forest sites with limited burn history exhibited little structural resistance to fire, though significant basal resprouting was observed among tree communities. Over the long term, the chronosequence did not show recovery trends in structural, compositional, or diversity metrics toward mature forest conditions. Fire negatively impacted biological legacies important to forest regeneration, including reducing canopy density, enhancing abiotic stressors, and creating conditions conducive to exotic grass invasion and recurring fire. Functional traits such as relative bark thickness, specific leaf area, and stem number were key predictors of resprouting strategies, highlighting diverse regeneration responses among Caribbean tropical dry forest species.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Puerto Rican tropical dry forest is not resilient to fire, as it disrupts biological legacies critical for regeneration and promotes transitions to degraded states that are difficult to restore. While resprouting remains a postfire legacy, fire alters ecosystem dynamics in ways that challenge long-term recovery. A conceptual model is proposed to illustrate how fire disrupts regeneration processes in Caribbean tropical dry forest.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harikrishnan Venugopalan Nair Radhamoni, Jason Vleminckx, María Natalia Umaña, Simon Queenborough, Liza Sheera Comita, Hebbalalu Satyanarayana Suresh, Handanakere Shivaramaiah Dattaraja, Subramanya Shravan Kumar, Raman Sukumar
{"title":"Beta-Diversity of Herbaceous Versus Woody Plant Communities Across a Tropical Rainfall Gradient","authors":"Harikrishnan Venugopalan Nair Radhamoni, Jason Vleminckx, María Natalia Umaña, Simon Queenborough, Liza Sheera Comita, Hebbalalu Satyanarayana Suresh, Handanakere Shivaramaiah Dattaraja, Subramanya Shravan Kumar, Raman Sukumar","doi":"10.1111/jvs.70034","DOIUrl":"https://doi.org/10.1111/jvs.70034","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Most of our current knowledge on tropical forest plant communities is based on trees, despite the substantial contribution of other lifeforms to plant diversity in these systems. In particular, there is a limited number of studies on understory herbaceous plants (herbs) in tropical forests. With their lower dispersal abilities, higher rates of evolution, and lower drought tolerance than trees, herbs are expected to exhibit different patterns of species composition across space. To compare the patterns and drivers of variation in species composition (β-diversity) between these two plant groups, we surveyed tree and herb communities in 13 one-ha plots along a rainfall gradient in a seasonally dry forest in India.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Mudumalai National Park, India.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>In each one-ha plot, we censused all trees ≥ 1 cm DBH in each one-ha plot, and herbs in 47–50 1 × 1 m subplots within each one-ha plot. In both groups, we estimated among-plot β-diversity, which we decomposed into two components: turnover and nestedness. Then we partitioned the relative influences of spatial and environmental predictors, including rainfall, temperature, soil, and fire frequency, on β-diversity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Contrary to our expectations, β-diversity was remarkably similar for herbs and trees, and both groups exhibited high turnover along the gradient. Rainfall and temperature explained most variation in composition within both groups, while fire and soil explained less variation, and their effects differed between groups.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>While trees and herbs show contrasting patterns of α-diversity across the same rainfall gradient, our study suggests that both life forms are impacted strongly by environmental filtering, predominantly rainfall and temperature, resulting in similar patterns of β-diversity. The high turnover observed in tree and herb communities, and the influence of rainfall and temperature in structuring these communities, should be considered when designing conservation and restoration strategies in the face of ongoing global change and other anthropogenic pressures on tropical forests.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagule Pressure and Soil Disturbance Diminish Plant Community Resistance to Invasion Across Habitat Types","authors":"Raytha de Assis Murillo, Viktoria Wagner","doi":"10.1111/jvs.70033","DOIUrl":"https://doi.org/10.1111/jvs.70033","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Questions</h3>\u0000 \u0000 <p>Community resistance to non-native plant invasions results from intrinsic habitat characteristics, propagule pressure, and the presence of disturbance. Species identity further complicates this relationship due to pre-existing adaptations. Despite these mechanisms being understood in isolation, their interplay is rarely explored in natural field communities. Furthermore, while survey studies have reported levels of invasion across habitat types, few have quantified differences in intrinsic invasibility experimentally.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Roy Berg Kinsella Research Ranch, Alberta, Canada.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We manipulated soil disturbance and propagule pressure in three habitat types (aspen forest, shrub vegetation, and prairie grassland) and examined their impact on the germination success of three pairs of phylogenetically similar native and non-native plant species (<i>Bromus ciliatus</i>/<i>B. inermis</i>, <i>Elymus trachycaulus</i>/<i>Agropyron cristatum</i>, <i>Poa secunda</i>/<i>P. pratensis</i>) for 3 months after seed addition.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Habitats played a crucial role in determining resistance to invasion, with aspen forest exhibiting the highest germination rates and invasibility and prairie grassland the lowest. High propagule pressure significantly increased invasibility across all habitat types and genera, and its impact was most pronounced when combined with soil disturbance, though this was contingent on genus. Invasive <i>Bromus</i> had higher germination compared to its native congener, even in the absence of disturbance. However, native <i>Elymus</i> and <i>Poa</i> species had equal or greater germination compared to their non-native counterparts.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our results underline that propagule pressure, disturbance, and species identity interact as drivers of plant community invasibility. Furthermore, our study demonstrated that habitat types differ in their intrinsic resistance to invasions. While aspen forests have greater invasibility, grasslands are more invaded than their resistance suggests. Thus, invasibility contrasts with levels of invasion reported in field surveys, supporting previous suggestions that these attributes do not always align.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to “Response of Subalpine Plant Vegetation to Snow Cover Duration Quantified by In Situ Repeat Photography”","authors":"","doi":"10.1111/jvs.70031","DOIUrl":"https://doi.org/10.1111/jvs.70031","url":null,"abstract":"<p>Zeidler M., Šipoš J., Banaš M., Václavík T. (2025): Response of Subalpine Plant Vegetation to Snow Cover Duration Quantified by In Situ Repeat Photography. <i>Journal of Vegetation Science</i>, 36:e70016. https://doi.org/10.1111/jvs.70016</p><p>The title “Response of subalpine plant vegetation to snow cover duration quantified by in situ repeat photography” includes a redundancy (“plant vegetation”).</p><p>Please, correct the title to “Response of subalpine vegetation to snow cover duration quantified by in situ repeat photography.”</p><p>We apologize for this error.</p><p>Zeidler M., Šipoš J., Banaš M., Václavík T.</p>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marija Milanović, Jonathan D. Bakker, Lori Biederman, Elizabeth T. Borer, Jane A. Catford, Elsa Cleland, Nicole Hagenah, Sylvia Haider, W. Stanley Harpole, Kimberly Komatsu, Andrew S. MacDougall, Christine Römermann, Eric W. Seabloom, Sonja Knapp, Ingolf Kühn
{"title":"Successful Alien Plant Species Exhibit Functional Dissimilarity From Natives Under Varied Climatic Conditions but Not Under Increased Nutrient Availability","authors":"Marija Milanović, Jonathan D. Bakker, Lori Biederman, Elizabeth T. Borer, Jane A. Catford, Elsa Cleland, Nicole Hagenah, Sylvia Haider, W. Stanley Harpole, Kimberly Komatsu, Andrew S. MacDougall, Christine Römermann, Eric W. Seabloom, Sonja Knapp, Ingolf Kühn","doi":"10.1111/jvs.70032","DOIUrl":"https://doi.org/10.1111/jvs.70032","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aims</h3>\u0000 \u0000 <p>The community composition of native and alien plant species is influenced by the environment (e.g., nutrient addition and changes in temperature or precipitation). A key objective of our study is to understand how differences in the traits of alien and native species vary across diverse environmental conditions. For example, the study examines how changes in nutrient availability affect community composition and functional traits, such as specific leaf area and plant height. Additionally, it seeks to assess the vulnerability of high-nutrient environments, such as grasslands, to alien species colonization and the potential for alien species to surpass natives in abundance. Finally, the study explores how climatic factors, including temperature and precipitation, modulate the relationship between traits and environmental conditions, shaping species success.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>In our study, we used data from a globally distributed experiment manipulating nutrient supplies in grasslands worldwide (NutNet).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We investigate how temporal shifts in the abundance of native and alien species are influenced by species-specific functional traits, including specific leaf area (SLA) and leaf nutrient concentrations, as well as by environmental conditions such as climate and nutrient treatments, across 17 study sites. Mixed-effects models were used to assess these relationships.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Alien and native species increasing in their abundance did not differ in their leaf traits. We found significantly lower specific leaf area (SLA) with an increase in mean annual temperature and lower leaf Potassium with mean annual precipitation. For trait–environment relationships, when compared to native species, successful aliens exhibited an increase in leaf Phosphorus and a decrease in leaf Potassium with an increase in mean annual precipitation. Finally, aliens' SLA decreased in plots with higher mean annual temperatures.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Therefore, studying the relationship between environment and functional traits may portray grasslands' dynamics better than focusing exclusively on traits of successful species, per se.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luciano Ludovico Maria De Benedictis, Stefano Chelli, Roberto Canullo, Giandiego Campetella
{"title":"Measuring Them all: Individual-Based Functional Spatial Patterns in Mountain Grasslands","authors":"Luciano Ludovico Maria De Benedictis, Stefano Chelli, Roberto Canullo, Giandiego Campetella","doi":"10.1111/jvs.70029","DOIUrl":"https://doi.org/10.1111/jvs.70029","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Questions</h3>\u0000 \u0000 <p>Spatial patterns of plant traits have rarely been studied at distances below 10 cm. Is it possible to detect nonrandom functional patterns at a very fine scale in mountain secondary grasslands? An analysis in terms of trait similarity, magnitude and density correlation can highlight the importance of different biotic and abiotic processes at these scales. We expect species identity to be of secondary importance if all individuals are identified by their measured traits, resulting in consistent patterns whether it is considered or not, especially if ITV (intraspecific trait variability) and functional overlap are high.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Natural reserve “Montagna di Torricchio,” a strict reserve in the Marche region, central Apennines, Italy.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Plant height, leaf area, and specific leaf area have been measured for each individual (1094 ramets) in 10 quadrats, divided into two grasslands differing in canopy cover. Functional redundancy and ITV were evaluated with overlap measures and variance partitioning. Marked point pattern statistics have been used to test for non-randomness of trait patterns either by considering all individuals at once or by excluding conspecific pairs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>At distances below 8 cm, we found evidence of trait convergence, pairs smaller than expected and negative density correlation. Above 8 cm, we found trait divergence and larger than expected pairs. We suggest biotic and abiotic causes for this, linked to physical packing or similarity in soil depth, respectively. The results differed between traits and between grasslands. The results were consistent whether conspecific pairs were excluded or not. There is a high functional overlap among species, and ITV has a large contribution to variability.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>We found nonrandom functional patterns in grasslands below 10 cm, an almost unexplored scale range in any vegetation. The approach used showed that taxonomic identity is less important than the functional setting of individuals at this scale.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Michalet, Jiri Dolezal, Jonathan Lenoir, Peter le Roux, Sabine Rumpf, Sonja Wipf
{"title":"Plant Community Responses to Climate Change: The Importance of Ecological Context Dependencies","authors":"Richard Michalet, Jiri Dolezal, Jonathan Lenoir, Peter le Roux, Sabine Rumpf, Sonja Wipf","doi":"10.1111/jvs.70028","DOIUrl":"https://doi.org/10.1111/jvs.70028","url":null,"abstract":"<p>Climate change is considered one of the most important threats to biodiversity (IPBES <span>2019</span>; Montràs-Janer et al. <span>2024</span>). It was a topic in 22% of scientific articles focusing on biodiversity (Clarivate, Web of Science) and the focus of several special issues in ecological journals during the last 5 years (e.g. Mahli et al. <span>2020</span>; Kéfi et al. <span>2024</span>).</p><p>This Special Issue « Plant Community Responses to Climate Change » focuses on community, rather than species-specific, responses and the importance of ecological context dependencies. Most ecological studies assessing the effect of climate change on biodiversity have focused on individual species responses, such as changes in geographical distributions with consequences for biodiversity at the regional scale (e.g., Thuiller et al. <span>2005</span>; Parmesan <span>2006</span>; Lenoir et al. <span>2020</span>; Lynn et al. <span>2021</span>). Beyond the question of scale in ecology, this might be due to the traditional view in the scientific literature that species are independent of each other (Whittaker <span>1956</span>) and, thus, that we should expect species-specific (or functional group-specific) responses to climate change (Chapin and Shaver <span>1985</span>). However, differing species-specific ecological requirements and niche positions in the ecological space do not preclude species interdependencies in plant communities (Callaway <span>1997</span>). Species interdependencies and ecosystem-engineering effects by foundation species (Wilson and Agnew <span>1992</span>) may contribute to explaining lag dynamics in species responses to climate change (Bertrand et al. <span>2011</span>; Dullinger et al. <span>2012</span>; Alexander et al. <span>2018</span>; Rumpf et al. <span>2019</span>). For example, Lenoir et al. (<span>2017</span>) have stressed that the microclimatic buffering effect of canopy trees in forest ecosystems contributes to explaining why most plant species have shown limited migration towards colder latitudes or elevations. This is due to the pronounced difference in temperature and relative humidity between the near-ground surface of open habitats and the understory of mature forests from wet and warm climates (De Frenne et al. <span>2019</span>). Therefore, there is an urgent need to integrate plant–plant interactions and a community-scale perspective into climate change studies to increase the accuracy of our predictions (Sanczuk et al. <span>2024</span>) and the efficiency of mitigation strategies (e.g., assisted migration; Michalet, Carcaillet, et al. <span>2024</span>).</p><p>Ecological context dependencies at the level of individual species and communities can strongly affect biotic responses to climate change (Lenoir <span>2020</span>), a phenomenon prevalent at different spatial extents and resolutions. At the regional level, for example, changes in alpine plant community composition depend not only on the regiona","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inés M. Alonso-Crespo, Vicky M. Temperton, Andreas Fichtner, Thomas Niemeyer, Michael Schloter, Benjamin M. Delory
{"title":"Exploring Priority and Year Effects on Plant Diversity, Productivity and Vertical Root Distribution: First Insights From a Grassland Field Experiment","authors":"Inés M. Alonso-Crespo, Vicky M. Temperton, Andreas Fichtner, Thomas Niemeyer, Michael Schloter, Benjamin M. Delory","doi":"10.1111/jvs.70026","DOIUrl":"https://doi.org/10.1111/jvs.70026","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Question</h3>\u0000 \u0000 <p>The order of arrival of plant species during community assembly can affect how species interact with each other. These so-called priority effects can have strong implications for the structure and functioning of plant communities. However, the extent to which the strength, direction, and persistence of priority effects are modulated by weather conditions during plant establishment (“year effects”) is not well known.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Niederhaverbeck, Bispingen, Germany.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We present the first results from a field experiment initiated in 2020 in Northern Germany to test how plant functional group (PFG) order of arrival and the year of initiation of an experiment interactively affect the structure and functioning of nutrient-poor dry acidic grasslands, both above and below ground. To do this, we established the same experiment, manipulating the order of arrival of forbs, grasses, and legumes on the same site, but in different years representing different weather conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We found that time since establishment was a stronger driver of plant community composition than PFG order of arrival and year of initiation. PFG order of arrival effects on plant diversity evolved over time and depended on the year of initiation of an experiment. Year of initiation, not PFG order of arrival, was the strongest driver of aboveground community productivity. Although we did not find an effect of PFG order of arrival on root productivity, it had a strong impact on the vertical distribution of roots. Communities where grasses were sown first rooted more shallowly than communities in which forbs or legumes were sown first.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>In experimental dry acidic grassland communities, community composition and productivity are shaped by time since establishment and initial weather conditions, rather than PFG order of arrival (6-week sowing interval). Importantly, our results demonstrate that manipulating PFG order of arrival is possibly an effective restoration measure to alter vertical root distribution towards more deep-rooting communities when sowing forbs or legumes first. This in turn could benefit dry grasslands on sandy soils during periods of water deficit.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julian Schrader, David Coleman, Ian Abbott, Sally Bryant, Ralf Buckley, Darren M. Crayn, Rachael V. Gallagher, Stephen Harris, Harold Heatwole, Betsy Jackes, Holger Kreft, Kevin Mills, Jamie Kirkpatrick, Peter K. Latz, John Neldner, Cornelia Sattler, Micah Visoiu, Elizabeth H. Wenk, John C. Z. Woinarski, Stuart Worboys, Ian J. Wright, Isabel Zorn, Mark Westoby
{"title":"A-Islands: A Vascular Plant Dataset for Biodiversity Research and Species Monitoring on Australian Continental Islands","authors":"Julian Schrader, David Coleman, Ian Abbott, Sally Bryant, Ralf Buckley, Darren M. Crayn, Rachael V. Gallagher, Stephen Harris, Harold Heatwole, Betsy Jackes, Holger Kreft, Kevin Mills, Jamie Kirkpatrick, Peter K. Latz, John Neldner, Cornelia Sattler, Micah Visoiu, Elizabeth H. Wenk, John C. Z. Woinarski, Stuart Worboys, Ian J. Wright, Isabel Zorn, Mark Westoby","doi":"10.1111/jvs.70019","DOIUrl":"https://doi.org/10.1111/jvs.70019","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aims</h3>\u0000 \u0000 <p>Australia's coastline is fringed by more than 8000 continental islands. These islands feature a diverse array of landforms, rock and soil types and geological origins. Some of these islands are among the least invaded, most pristine habitats in Australia and support high plant diversity. Here, we present a new Australia-wide curated dataset for plant species occurrences on islands.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Combining information from 1349 species lists and floras, A-Islands includes data on > 6500 plant species from 844 islands ranging in size from 18 m<sup>2</sup> to 4400 km<sup>2</sup>, exhibiting different degrees of isolation from the mainland, and spanning all major Australian climate zones. Of these, 251 islands have been repeatedly sampled up to 11 times, making it possible to investigate temporal compositional change. A-Islands is open access and will be continuously updated. Its simple data structure, consisting of three comma-separated files allows easy integration with other Australian and global plant-occurrence databases and can serve as a repository for island research in Australia.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Knowing which species occur on Australia's islands will provide opportunities for future research, including studying changes in biodiversity and species turnover within and among archipelagos, tests of classical island biogeography theory, and as a baseline for ecological monitoring and conservation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias A. W. Elliott, Peter J. Bellingham, George L. W. Perry, Bruce R. Burns
{"title":"A Virulent Soil Pathogen Alters Temperate Rain Forest Understorey Sapling Population Dynamics and Successional Trajectories","authors":"Tobias A. W. Elliott, Peter J. Bellingham, George L. W. Perry, Bruce R. Burns","doi":"10.1111/jvs.70014","DOIUrl":"https://doi.org/10.1111/jvs.70014","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aims</h3>\u0000 \u0000 <p>Understanding the impacts of forest tree pathogens on understorey sapling populations is critical for understanding their population-level effects and the likely successional trajectories of infected communities. We assessed the impacts of <i>Phytophthora agathidicida</i>, a soil-borne pathogen, on the sapling population dynamics of the disease-susceptible, locally dominant canopy tree, the conifer kauri (<i>Agathis australis</i>, Araucariaceae). We also examined the indirect effects of <i>P. agathidicida</i> on likely resistant allospecifics that span a range of shade-tolerances as saplings, to predict future successional trajectories.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Waitākere Ranges, west of Auckland, Aotearoa-New Zealand.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We analysed data from four kauri-dominated permanent plots in Aotearoa-New Zealand warm temperate rain forests. Two plots were early-successional and two were late-successional, one in each pair had overstorey kauri showing intense visual <i>P. agathidicida</i> symptoms, and the other overstorey kauri showing few symptoms. We examined the association between kauri trees and saplings using point pattern analysis and the relationship between the level of crowding around saplings and their growth and survival rates. We compared the growth and survival rates of kauri and allospecifics, categorised by shade tolerance, among the plots.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Kauri forms sapling banks under conspecific trees that were less dense in late-successional forests and in those where the overstorey kauri showed symptoms of <i>P. agathidicida</i> infection. Despite having lower densities, kauri sapling growth rates were higher in symptomatic plots. The growth rates of light-demanding allospecifics were also higher in these plots, with minor differences in mortality and growth rates for more shade-tolerant allospecifics. <i>P. agathidicida</i> may promote sapling growth and survival of kauri and some allospecifics in infected plots.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Sapling vital rates and population sizes differed between asymptomatic and symptomatic plots, particularly in early-successional settings, where <i>P. agathidicida</i> may reset succession in early-successional communities back to those dominated by species that first colonised after disturbance.</p>\u0000 </section>\u0000 </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}