Aud H. Halbritter, Joe Atkinson, Celesté Maré, Sam J. Ahler, Emil A. S. Andersen, Pia M. Bradler, Marta Correia, Alexander Elsy, Susan E. Eshelman, Sonya R. Geange, Meghan Hayden, Dickson Mauki, Julia Eckberg, Joshua Erkelenz, Coskun Guclu, Cora Ena Löwenstein, Brian S. Maitner, Marta Baumane, Hilary Rose Dawson, Brian Enquist, Josef C. Garen, Mukhlish Jamal Musa Holle, Julia Chacon Labella, Kai Lepley, Sean T. Michaletz, Bernard Olivier, Courtenay A. Ray, Jonathan von Oppen, Richard J. Telford, Vigdis Vandvik
{"title":"Effects of Warming, Nitrogen and Grazing on Plant Functional Traits Differ Between Alpine and Sub-Alpine Grasslands","authors":"Aud H. Halbritter, Joe Atkinson, Celesté Maré, Sam J. Ahler, Emil A. S. Andersen, Pia M. Bradler, Marta Correia, Alexander Elsy, Susan E. Eshelman, Sonya R. Geange, Meghan Hayden, Dickson Mauki, Julia Eckberg, Joshua Erkelenz, Coskun Guclu, Cora Ena Löwenstein, Brian S. Maitner, Marta Baumane, Hilary Rose Dawson, Brian Enquist, Josef C. Garen, Mukhlish Jamal Musa Holle, Julia Chacon Labella, Kai Lepley, Sean T. Michaletz, Bernard Olivier, Courtenay A. Ray, Jonathan von Oppen, Richard J. Telford, Vigdis Vandvik","doi":"10.1111/jvs.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Questions</h3>\n \n <p>Alpine grasslands are affected by a range of global change drivers, including land-use change, climate warming and pollution. How these drivers interact and affect plant functional communities is poorly understood. We used plant functional traits to test the single and interactive effects of warming, nitrogen addition and grazing on alpine grassland communities and assessed the importance of intraspecific trait variation.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Alpine and sub-alpine grasslands in western Norway.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>For three years, we applied global change treatments to test the effects of warming with nitrogen addition, and warming with grazing at an alpine and sub-alpine plant community. We measured six plant functional traits related to plant size and leaf economics, including intraspecific trait variation.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our results show that warming and nitrogen addition shifted size-related traits in plant communities towards taller plants with larger leaves, and more strongly in the alpine than in the sub-alpine plant community. Warming also affected leaf economic traits, promoting faster traits in the alpine and slower traits in the sub-alpine plant community. Grazing shifted communities to faster leaves (grazing <i>tolerant</i>) in the sub-alpine community and slower leaves (grazing <i>avoidance</i>) in the alpine community. There were no interactive effects between the global change drivers. The relative contributions of species turnover and intraspecific trait variation to overall trait variation differed between origins of the two plant communities.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We show that these global change drivers shift alpine and sub-alpine plant communities in different directions, likely due to differences in resource availability. Our results support the need for site-specific management strategies in these systems.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70061","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Questions
Alpine grasslands are affected by a range of global change drivers, including land-use change, climate warming and pollution. How these drivers interact and affect plant functional communities is poorly understood. We used plant functional traits to test the single and interactive effects of warming, nitrogen addition and grazing on alpine grassland communities and assessed the importance of intraspecific trait variation.
Location
Alpine and sub-alpine grasslands in western Norway.
Methods
For three years, we applied global change treatments to test the effects of warming with nitrogen addition, and warming with grazing at an alpine and sub-alpine plant community. We measured six plant functional traits related to plant size and leaf economics, including intraspecific trait variation.
Results
Our results show that warming and nitrogen addition shifted size-related traits in plant communities towards taller plants with larger leaves, and more strongly in the alpine than in the sub-alpine plant community. Warming also affected leaf economic traits, promoting faster traits in the alpine and slower traits in the sub-alpine plant community. Grazing shifted communities to faster leaves (grazing tolerant) in the sub-alpine community and slower leaves (grazing avoidance) in the alpine community. There were no interactive effects between the global change drivers. The relative contributions of species turnover and intraspecific trait variation to overall trait variation differed between origins of the two plant communities.
Conclusions
We show that these global change drivers shift alpine and sub-alpine plant communities in different directions, likely due to differences in resource availability. Our results support the need for site-specific management strategies in these systems.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.