{"title":"Dynamic modeling and analysis of rolling bearing faults under time-varying excitations considering defect deformation","authors":"Chao Zhang, Yangbiao Wu, Shuai Xu, Feifan Qin, Le Wu, Bing Ouyang","doi":"10.21595/jve.2024.23672","DOIUrl":"https://doi.org/10.21595/jve.2024.23672","url":null,"abstract":"Fault mechanism analysis is one of the methods in fault diagnosis, and the dynamic modeling of rolling bearing faults plays a crucial role in studying fault mechanisms. Existing dynamic fault models only consider the impact of fault size and bearing speed on the impact force, providing an incomplete description of the impact force. In order to more accurately describe the dynamic fault model of impact forces, this paper focuses on the deep groove ball bearing with outer race faults. Factors such as defect deformation, speed, and fault size are considered, and an instantaneous impact force excitation function is proposed. Based on this proposed excitation function, a dynamic model for the outer race fault of deep groove ball bearings is established. Finally, through simulation and experimental comparison, the results indicate that the fault characteristic frequencies and their harmonics of the model in this paper are closer to the actual fault characteristic frequencies, reducing the error by 1 to 2 Hz. Therefore, the model proposed in this paper is more effective and accurate, providing a more precise rolling bearing fault model for the study of fault mechanisms.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140408399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on frequency-variation square ratio in damage identification technique for single column platforms","authors":"Tengge Sun, Qinghua Ai","doi":"10.21595/jve.2024.23331","DOIUrl":"https://doi.org/10.21595/jve.2024.23331","url":null,"abstract":"This paper attempts to utilize lower order harmonics and modes of vibration consisting of “square ratios of frequency variations” as structural damage susceptibility characteristics. This is followed by the development of the frequency-based method. Firstly, this paper derives the theoretical formulation of the square ratio of frequency variation method. Secondly, a finite element model of a single column platform is established. Then the damage is simulated using the reduced modulus of elasticity to localize the damage. The result is shown to be feasible. Thirdly, a model of the offshore single column platform is constructed, and the damage is simulated using cracks on the column. The “frequency variation square ratio” is valid, so the method can be used in reality. This method is applied to the single column platform model, suitable for a beam structure. It is very effective for the single column damage identification at different damage levels, and can also initially locate the damage. This method has high practical application value and reference value for future studies.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140416380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single channel blind source separation of rolling bearing compound faults based on self-learning sparse decomposition and feature mode decomposition","authors":"HaiBo Zhang","doi":"10.21595/jve.2024.23649","DOIUrl":"https://doi.org/10.21595/jve.2024.23649","url":null,"abstract":"Feature mode decomposition (FMD) has advantages over the other newer time-frequency methods such as ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) in single channel blind source separation (SCBSS). However, FMD has the defect of needing to determine the precise number of fault sources manually. To solve the above defect of FMD, an adaptive method for determining the number of fault sources based on the shift invariant sparse code (SISC) is proposed. SISC was used to train a set of basis functions from the single channel signal, and the corresponding potential components were reconstructed firstly. Subsequently, the structural similarity of these potential components was used for clustering, and each of the obtained clustering signals represented one kind of fault. Then the number of clustering was determined by minimizing the structural correlation among the clustering signals. It was considered that the source separation had achieved the best effect when the structural difference among the clusters was the largest, and the number of clustering at this time was used as the optimal estimated value, which was used as the modal inputs number of FMD calculation model to realize SCBSS of rolling bearing. Simulation and experimental analysis were carried out to verify the effectiveness of the proposed method, and its superiority was also verified through comparison.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140441651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on automatic detection of gradual fault of high voltage electric energy metering transformer based on fuzzy rough set and whale optimization algorithm","authors":"Chunguang Wang, Zhiwu Wu, Tianfu Huang, Xiang Wu, Hanbin Huang","doi":"10.21595/jve.2023.23596","DOIUrl":"https://doi.org/10.21595/jve.2023.23596","url":null,"abstract":"Based on fuzzy rough set and whale optimization algorithm, the automatic fault detection method of high-voltage electric energy metering transformer is studied to improve the fault diagnosis effect and efficiency. On the basis of constructing the mathematical model of gradual fault of high-voltage electric energy metering transformer, the fuzzy rough set theory is used to reduce the data attributes of fault samples, eliminate similar attributes, determine the minimum fault feature set, and complete the fault feature selection, which is used as the input of the fault detection model based on Whale Optimization Algorithm-based Support Vector Machine (WOA-SVM). After the kernel parameters and penalty factors of SVM are optimized by whale optimization algorithm, the type of gradual fault of high-voltage electric energy metering transformer is identified. The experimental results show that the reduced fault attributes are distributed differently in the sample data, and the fault detection accuracy can be improved by 9.5 % through fault feature selection. The fault diagnosis model with Gaussian radial basis function, kernel parameter of 0.05 and penalty factor of 10 has the best performance. This method can identify the gradual fault types of high-voltage electric energy metering transformers, and the fault diagnosis effect is outstanding.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140445536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of a commercial vehicle powertrain mounting system based on new rubber mounts","authors":"Bao-Shan Shen, Mei-Juan Zhang, Jun-Jun Jin","doi":"10.21595/jve.2023.23536","DOIUrl":"https://doi.org/10.21595/jve.2023.23536","url":null,"abstract":"In order to improve the vibration isolation, environmental adaptability and development efficiency of rubber mounts, a novel rubber mount with adjustable parameters such as stiffness, support height and limit distance was proposed, and its structural composition and working principle were described. And then, a commercial vehicle was taken as the research object to conduct the calculation of mounts stiffness by employing the energy decoupling method and genetic algorithm. On the basis of the influence of cone angle, thickness and height on the ratio of axial-radial stiffness, the detailed structural design of the mounts was carried out, and the relationship between the preloading displacement and axial-radial stiffness was studied by the method of theoretical calculation and test, which made the process of the stiffness adjustment more specific and accurate. Finally, the vibration isolation performance test of the Powertrain Mounting System (PMS) before and after stiffness adjustment was completed. Results show that the adjusted PMS indicates better vibration isolation performance at idle speed and slow acceleration in place, and the new mounts can effectively improve the vibration performance of vehicle, environmental adaptability of mounts and product development efficiency.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140444623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A frost ice formation method of horizontal axis wind turbine blade based on polynomial fitting","authors":"Renfeng Zhang, Xin Wang, Gege Wang","doi":"10.21595/jve.2023.23605","DOIUrl":"https://doi.org/10.21595/jve.2023.23605","url":null,"abstract":"In this paper, a new direct calculation method of frost ice shape on the blade surface of horizontal axis wind turbine is proposed. Using linear interpolation algorithm, the airfoil ice shape obtained by LEWICE 2D software or ice wind tunnel experiment was fitted with equidistant step length in the first and fourth quadrants and equidistant step length in the second and third quadrants. The key point coordinates of ice shapes on cross-sections along the span-wise were mapped into lagging and flapping surfaces through the mathematical dimension reduction, respectively. The polynomial fitting was used to deal with ice projection points of multiple sections in lagging and flapping surfaces, and then the blade’s frost ice shape was obtained. By calculating the sum of squared residuals of the polar diameter at the same polar angle, the errors between experimental and airfoil frost shape fitting methods, experimental and FENSAP, and blade frost shape formation methods and FENSAP were analyzed. The results show that the new method is in good agreement with the ice shape of FENSAP simulation results and experimental results. The residual sum of squares is small. This method makes the analysis of frost ice morphology of wind turbine blades do not need to consider interdisciplinary. The calculation process is simple and reliable.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140444964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of electronic sensors based on the connection structure of double rotors with circular arc end teeth","authors":"Yi Lv","doi":"10.21595/jve.2024.23713","DOIUrl":"https://doi.org/10.21595/jve.2024.23713","url":null,"abstract":"To analyze the mechanical performance of the arc end tooth connection structure, the optimization of electronic sensors based on the connection structure of double rotors with circular arc end teeth was studied. By designing and optimizing the structural dimensions of the arc end tooth, the relative position of the grinding wheel and the workpiece was determined, and the optimal electromagnetic actuator size, as well as the number and installation position of the optimized sensors, were obtained. The experimental results showed that the relative error of the rigid vibration mode of the arc end tooth double rotor connection structure was controlled within 10 %. At high speeds, the electromagnetic actuator had a significant control effect on the vibration of the centrifugal machine shaft. It diminished the vibration amplitudes in the X and Y directions by 37.6 % and 30.2 %, respectively. By optimizing the double rotor connection structure with circular end teeth and electronic sensors, effective control of the relative error of rigid vibration modes has been achieved, leading to significant reduction of the centrifugal shaft's vibration at high speeds. In addition, the sensor layout was optimized to enable real-time equipment vibration monitoring, ensuring equipment safety and stability. These achievements not only enhance the mechanical performance of the rotor system, but also provide important guarantees for the stability of the mechanical system.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140447447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seismic reinforcement effect and vibration test of externally attached substructures in a selected Japan school building","authors":"Liang Li, Hitoshi Marusaka, Yihui Zhang","doi":"10.21595/jve.2023.23543","DOIUrl":"https://doi.org/10.21595/jve.2023.23543","url":null,"abstract":"In the long-term seismic work in Japan, an effective seismic reinforcement design system and reasonable seismic reinforcement technology have been developed, which is worth learning from. In this paper, the seismic reinforcement of a school building in Japan is taken as an example. Firstly, an overall reinforcement scheme of external prestressed precast concrete (PC) frame and steel brace is proposed. Then, based on the calculation results of seismic reinforcement and the ambient measurement before and after seismic reinforcement, the effectiveness and rationality of the seismic reinforcement method are analyzed. The results show that the seismic reinforcement method of attached substructures changes the original structural system, and solves the problems of excessive deformation and insufficient seismic performance. The reinforcement method improves the story stiffness of the structure, and the vibration period of simple harmonic motion after the implementation of seismic reinforcement is reduced by 0.845 times at most. The research results can provide reference for seismic reinforcement design and performance evaluation of existing school buildings.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139958277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of piezoelectric energy harvester based on wind-induced vibration effect","authors":"Zhipeng Li, Yuanliang Zhang, Le Yang, Hejuan Chen","doi":"10.21595/jve.2023.23421","DOIUrl":"https://doi.org/10.21595/jve.2023.23421","url":null,"abstract":"In the field of new environmental energy harvesting technology, wind energy and piezoelectric energy harvesting have become research hotspots. By utilizing wind energy into vibration energy, i.e., wind-induced vibration effect is a research hotspot in the field of environmental energy harvesting. This article comprehensively analyzes the research status and development trend of piezoelectric energy harvesters based on wind-induced vibration effects at home and abroad. It was found that the conversion process of wind energy to vibration energy is mainly based on flutter, galloping, and acoustic resonance. The conversion of vibration energy into electrical energy is mainly piezoelectric power generation, supplemented by magnetic induction power generation and friction power generation. For high power density and small volume application scenarios, resonant cavity type wind vibration energy collection is the main development trend.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140447228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convolutional neural network intelligent fault diagnosis method for rotating machinery based on discriminant correlation analysis multi-domain feature fusion strategy","authors":"Guisheng Lan, Haibo Shi","doi":"10.21595/jve.2024.23612","DOIUrl":"https://doi.org/10.21595/jve.2024.23612","url":null,"abstract":"Aiming at solving the problems of limited training data, single input information, and limited diagnostic accuracy under the influence of strong background noise in fault diagnosis of rotating machinery, this paper proposes a fault diagnosis method based on the combination of discriminant correlation analysis (DCA) and convolutional neural network (CNN). Firstly, the original vibration signal is divided into several segments in the time domain, and the training data is directly processed by one CNN branch to extract multi-scale time domain features. Simultaneously, the divided data is subjected to discrete wavelet transform (DWT), and processed by another branch of CNN to extract multi-scale time-frequency features. Then, the DCA feature fusion mechanism is adopted to fuse the two-domain features extracted in the parallel branches to improve the model’ detection ability. Finally, the fused features are input into the deep CNN for training and learning to extract new features and output the classification results. Through the experimental analysis of two different types of data, the results show that the proposed method can be used for fault diagnosis of rotating machinery effectively. Compared with the single CNN network, the proposed method combines the multi-domain multi-scale feature extraction module with the DCA feature fusion module to enrich the feature information extraction ability. At the same time, the network performance is improved to get higher fault classification accuracy higher.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139959368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}