柔性关节机器人抓取端振动的自动控制方法

IF 0.7 Q4 ENGINEERING, MECHANICAL
Yufang Sun
{"title":"柔性关节机器人抓取端振动的自动控制方法","authors":"Yufang Sun","doi":"10.21595/jve.2023.23264","DOIUrl":null,"url":null,"abstract":"Because flexible robots have flexible components such as reducers, there are problems of accuracy deviation and end vibration in the process of external interference and trajectory tracking. This leads to the proposal of a Sliding Mode Control Approach Based on RBF Neural Network (SMC-RBF) parameter optimization. This method is mainly applied to reduce the end vibration and running position error of flexible robot. Firstly, the Newton-Euler method is used to establish the dynamic model of robot considering joint flexibility. At the same time, the experiment optimizes the Sliding Mode Control (SMC) method through RBF neural network. The experiments verify the control methods of the two-joint flexible robot and the six-joint flexible robot respectively. In the control of two-joint robot, the maximum tracking curve error of SMC is only about 0.25 rad under the interference of pulse signal; And the recovery time is only about 1 s. In the control of 6-joint robot, the maximum error of RBF-sliding mode control method on XYZ axis is 0.7 mm, 0.25 mm and 1.25 mm respectively; The error on three axes is smaller than that of traditional PD control method. The results demonstrate that the tracking error of the improved mode control is small, the chattering phenomenon of the robot system is weakened as well.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic vibration control method for grasping end of flexible joint robot\",\"authors\":\"Yufang Sun\",\"doi\":\"10.21595/jve.2023.23264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because flexible robots have flexible components such as reducers, there are problems of accuracy deviation and end vibration in the process of external interference and trajectory tracking. This leads to the proposal of a Sliding Mode Control Approach Based on RBF Neural Network (SMC-RBF) parameter optimization. This method is mainly applied to reduce the end vibration and running position error of flexible robot. Firstly, the Newton-Euler method is used to establish the dynamic model of robot considering joint flexibility. At the same time, the experiment optimizes the Sliding Mode Control (SMC) method through RBF neural network. The experiments verify the control methods of the two-joint flexible robot and the six-joint flexible robot respectively. In the control of two-joint robot, the maximum tracking curve error of SMC is only about 0.25 rad under the interference of pulse signal; And the recovery time is only about 1 s. In the control of 6-joint robot, the maximum error of RBF-sliding mode control method on XYZ axis is 0.7 mm, 0.25 mm and 1.25 mm respectively; The error on three axes is smaller than that of traditional PD control method. The results demonstrate that the tracking error of the improved mode control is small, the chattering phenomenon of the robot system is weakened as well.\",\"PeriodicalId\":49956,\"journal\":{\"name\":\"Journal of Vibroengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibroengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/jve.2023.23264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2023.23264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于柔性机器人具有减速器等柔性部件,在外部干扰和轨迹跟踪过程中存在精度偏差和末端振动问题。为此,提出了一种基于RBF神经网络(SMC-RBF)参数优化的滑模控制方法。该方法主要用于降低柔性机器人的末端振动和运行位置误差。首先,采用牛顿-欧拉方法建立了考虑关节柔性的机器人动力学模型。同时,通过RBF神经网络对滑模控制(SMC)方法进行优化。实验分别验证了两关节柔性机器人和六关节柔性机器人的控制方法。在双关节机器人控制中,在脉冲信号干扰下,SMC的最大跟踪曲线误差仅为0.25 rad左右;恢复时间仅为1 s左右。在六关节机器人的控制中,rbf -滑模控制方法对XYZ轴的最大误差分别为0.7 mm、0.25 mm和1.25 mm;与传统PD控制方法相比,三轴误差较小。结果表明,改进后的模式控制跟踪误差小,机器人系统的抖振现象减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic vibration control method for grasping end of flexible joint robot
Because flexible robots have flexible components such as reducers, there are problems of accuracy deviation and end vibration in the process of external interference and trajectory tracking. This leads to the proposal of a Sliding Mode Control Approach Based on RBF Neural Network (SMC-RBF) parameter optimization. This method is mainly applied to reduce the end vibration and running position error of flexible robot. Firstly, the Newton-Euler method is used to establish the dynamic model of robot considering joint flexibility. At the same time, the experiment optimizes the Sliding Mode Control (SMC) method through RBF neural network. The experiments verify the control methods of the two-joint flexible robot and the six-joint flexible robot respectively. In the control of two-joint robot, the maximum tracking curve error of SMC is only about 0.25 rad under the interference of pulse signal; And the recovery time is only about 1 s. In the control of 6-joint robot, the maximum error of RBF-sliding mode control method on XYZ axis is 0.7 mm, 0.25 mm and 1.25 mm respectively; The error on three axes is smaller than that of traditional PD control method. The results demonstrate that the tracking error of the improved mode control is small, the chattering phenomenon of the robot system is weakened as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibroengineering
Journal of Vibroengineering 工程技术-工程:机械
CiteScore
1.70
自引率
0.00%
发文量
97
审稿时长
4.5 months
期刊介绍: Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信