Ahmed Ali, Ahmad Salah, Mahmoud Bekhit, Ahmed Fathalla
{"title":"Divide-and-train: A new approach to improve the predictive tasks of bike-sharing systems.","authors":"Ahmed Ali, Ahmad Salah, Mahmoud Bekhit, Ahmed Fathalla","doi":"10.3934/mbe.2024282","DOIUrl":"https://doi.org/10.3934/mbe.2024282","url":null,"abstract":"<p><p>Bike-sharing systems (BSSs) have become commonplace in most cities worldwide as an important part of many smart cities. These systems generate a continuous amount of large data volumes. The effectiveness of these BSS systems depends on making decisions at the proper time. Thus, there is a vital need to build predictive models on the BSS data for the sake of improving the process of decision-making. The overwhelming majority of BSS users register before utilizing the service. Thus, several BSSs have prior knowledge of the user's data, such as age, gender, and other relevant details. Several machine learning and deep learning models, for instance, are used to predict urban flows, trip duration, and other factors. The standard practice for these models is to train on the entire dataset to build a predictive model, whereas the biking patterns of various users are intuitively distinct. For instance, the user's age influences the duration of a trip. This endeavor was motivated by the existence of distinct user patterns. In this work, we proposed <i>divide-and-train</i>, a new method for training predictive models on station-based BSS datasets by dividing the original datasets on the values of a given dataset attribute. Then, the proposed method was validated on different machine learning and deep learning models. All employed models were trained on both the complete and split datasets. The enhancements made to the evaluation metric were then reported. Results demonstrated that the proposed method outperformed the conventional training approach. Specifically, the root mean squared error (RMSE) and mean absolute error (MAE) metrics have shown improvements in both trip duration and distance prediction, with an average accuracy of 85% across the divided sub-datasets for the best performing model, i.e., random forest.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 7","pages":"6471-6492"},"PeriodicalIF":2.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia.","authors":"Adel Alatawi, Abba B Gumel","doi":"10.3934/mbe.2024281","DOIUrl":"https://doi.org/10.3934/mbe.2024281","url":null,"abstract":"<p><p>A new mathematical model for the transmission dynamics and control of the Middle Eastern respiratory syndrome (MERS), a respiratory virus caused by MERS-CoV <i>coronavirus</i> (and primarily spread to humans by dromedary camels) that first emerged out of the Kingdom of Saudi Arabia (KSA) in 2012, was designed and used to study the transmission dynamics of the disease in a human-camel population within the KSA. Rigorous analysis of the model, which was fitted and cross-validated using the observed MERS-CoV data for the KSA, showed that its disease-free equilibrium was locally asymptotically stable whenever its reproduction number (denoted by $ {mathbb R}_{0M} $) was less than unity. Using the fixed and estimated parameters of the model, the value of $ {mathbb R}_{0M} $ for the KSA was estimated to be 0.84, suggesting that the prospects for MERS-CoV elimination are highly promising. The model was extended to allow for the assessment of public health intervention strategies, notably the potential use of vaccines for both humans and camels and the use of face masks by humans in public or when in close proximity with camels. Simulations of the extended model showed that the use of the face mask by humans who come in close proximity with camels, as a sole public health intervention strategy, significantly reduced human-to-camel and camel-to-human transmission of the disease, and this reduction depends on the efficacy and coverage of the mask type used in the community. For instance, if surgical masks are prioritized, the disease can be eliminated in both the human and camel population if at least 45% of individuals who have close contact with camels wear them consistently. The simulations further showed that while vaccinating humans as a sole intervention strategy only had marginal impact in reducing the disease burden in the human population, an intervention strategy based on vaccinating camels only resulted in a significant reduction in the disease burden in camels (and, consequently, in humans as well). Thus, this study suggests that attention should be focused on effectively combating the disease in the camel population, rather than in the human population. Furthermore, the extended model was used to simulate a hybrid strategy, which combined vaccination of both humans and camels as well as the use of face masks by humans. This simulation showed a marked reduction of the disease burden in both humans and camels, with an increasing effectiveness level of this intervention, in comparison to the baseline scenario or any of the aforementioned sole vaccination scenarios. In summary, this study showed that the prospect of the elimination of MERS-CoV-2 in the Kingdom of Saudi Arabia is promising using pharmaceutical (vaccination) and nonpharmaceutical (mask) intervention strategies, implemented in isolation or (preferably) in combination, that are focused on reducing the disease burden in the camel population.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 7","pages":"6425-6470"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical modeling in semelparous biological species through two-sex branching processes.","authors":"Manuel Molina, Manuel Mota, Alfonso Ramos","doi":"10.3934/mbe.2024280","DOIUrl":"https://doi.org/10.3934/mbe.2024280","url":null,"abstract":"<p><p>This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6407-6424"},"PeriodicalIF":2.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical analysis of synthesis chemical reactions for virus building block polymers in <i>vivo</i>.","authors":"Yuewu Liu, Yan Peng","doi":"10.3934/mbe.2024279","DOIUrl":"https://doi.org/10.3934/mbe.2024279","url":null,"abstract":"<p><p>For numerous viruses, their capsid assembly is composed of two steps. The first step is that virus structural protein monomers are polymerized to building blocks. Then, these building blocks are cumulative and efficiently assembled to virus capsid shell. These building block polymerization reactions in the first step are fundamental for virus assembly, and some drug targets were found in this step. In this work, we focused on the first step. Often, virus building blocks consisted of less than six monomers. That is, dimer, trimer, tetramer, pentamer, and hexamer. We presented mathematical models for polymerization chemical reactions of these five building blocks, respectively. Then, we proved the existence and uniqueness of the positive equilibrium solution for these mathematical models one by one. Subsequently, we also analyzed the stability of the equilibrium states, respectively. These results may provide further insight into property of virus building block polymerization chemical reactions in <i>vivo</i>.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6393-6406"},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir
{"title":"Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model.","authors":"Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir","doi":"10.3934/mbe.2024278","DOIUrl":"https://doi.org/10.3934/mbe.2024278","url":null,"abstract":"<p><p>The pursuit of effective vaccination strategies against COVID-19 remains a critical endeavour in global public health, particularly amidst challenges posed by immunity loss and evolving epidemiological dynamics. This study investigated optimal vaccination strategies by considering age structure, immunity dynamics, and varying maximal vaccination rates. To this end, we formulated an SEIR model stratified into $ n $ age classes, with the vaccination rate as an age-dependent control variable in an optimal control problem. We developed an objective function aimed at minimising critical infections while optimising vaccination efforts and then conducted rigorous mathematical analyses to ensure the existence and characterization of the optimal control. Using data from three countries with diverse age distributions, in expansive, constrictive, and stationary pyramids, we performed numerical simulations to evaluate the optimal age-dependent vaccination strategy, number of critical infections, and vaccination frequency. Our findings highlight the significant influence of maximal vaccination rates on shaping optimal vaccination strategies. Under constant maximal vaccination rates, prioritising age groups based on population demographics proves effective, with higher rates resulting in fewer critically infected individuals across all age distributions. Conversely, adopting age-dependent maximal vaccination rates, akin to the WHO strategy, may not always lead to the lowest critical infection peaks but offers a viable alternative in resource-constrained settings.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6372-6392"},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal vaccine allocation strategy: Theory and application to the early stage of COVID-19 in Japan.","authors":"Toshikazu Kuniya, Taisuke Nakata, Daisuke Fujii","doi":"10.3934/mbe.2024277","DOIUrl":"https://doi.org/10.3934/mbe.2024277","url":null,"abstract":"<p><p>In this paper, we construct an age-structured epidemic model to analyze the optimal vaccine allocation strategy in an epidemic. We focus on two topics: the first one is the optimal vaccination interval between the first and second doses, and the second one is the optimal vaccine allocation ratio between young and elderly people. On the first topic, we show that the optimal interval tends to become longer as the relative efficacy of the first dose to the second dose (RE) increases. On the second topic, we show that the heterogeneity in the age-dependent susceptibility (HS) affects the optimal allocation ratio between young and elderly people, whereas the heterogeneity in the contact frequency among different age groups (HC) tends to affect the effectiveness of the vaccination campaign. A counterfactual simulation suggests that the epidemic wave in the summer of 2021 in Japan could have been greatly mitigated if the optimal vaccine allocation strategy had been taken.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6359-6371"},"PeriodicalIF":2.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on MEC computing offload strategy for joint optimization of delay and energy consumption.","authors":"Mingchang Ni, Guo Zhang, Qi Yang, Liqiong Yin","doi":"10.3934/mbe.2024276","DOIUrl":"https://doi.org/10.3934/mbe.2024276","url":null,"abstract":"<p><p>The decision-making process for computational offloading is a critical aspect of mobile edge computing, and various offloading decision strategies are strongly linked to the calculated latency and energy consumption of the mobile edge computing system. This paper proposes an offloading scheme based on an enhanced sine-cosine optimization algorithm (SCAGA) designed for the \"edge-end\" architecture scenario within edge computing. The research presented in this paper covers the following aspects: (1) Establishment of computational resource allocation models and computational cost models for edge computing scenarios; (2) Introduction of an enhanced sine and cosine optimization algorithm built upon the principles of Levy flight strategy sine and cosine optimization algorithms, incorporating concepts from roulette wheel selection and gene mutation commonly found in genetic algorithms; (3) Execution of simulation experiments to evaluate the SCAGA-based offloading scheme, demonstrating its ability to effectively reduce system latency and optimize offloading utility. Comparative experiments also highlight improvements in system latency, mobile user energy consumption, and offloading utility when compared to alternative offloading schemes.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6336-6358"},"PeriodicalIF":2.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyperparameter optimization: Classics, acceleration, online, multi-objective, and tools.","authors":"Jia Mian Tan, Haoran Liao, Wei Liu, Changjun Fan, Jincai Huang, Zhong Liu, Junchi Yan","doi":"10.3934/mbe.2024275","DOIUrl":"https://doi.org/10.3934/mbe.2024275","url":null,"abstract":"<p><p>Hyperparameter optimization (HPO) has been well-developed and evolved into a well-established research topic over the decades. With the success and wide application of deep learning, HPO has garnered increased attention, particularly within the realm of machine learning model training and inference. The primary objective is to mitigate the challenges associated with manual hyperparameter tuning, which can be ad-hoc, reliant on human expertise, and consequently hinders reproducibility while inflating deployment costs. Recognizing the growing significance of HPO, this paper surveyed classical HPO methods, approaches for accelerating the optimization process, HPO in an online setting (dynamic algorithm configuration, DAC), and when there is more than one objective to optimize (multi-objective HPO). Acceleration strategies were categorized into multi-fidelity, bandit-based, and early stopping; DAC algorithms encompassed gradient-based, population-based, and reinforcement learning-based methods; multi-objective HPO can be approached via scalarization, metaheuristics, and model-based algorithms tailored for multi-objective situation. A tabulated overview of popular frameworks and tools for HPO was provided, catering to the interests of practitioners.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6289-6335"},"PeriodicalIF":2.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytic delay distributions for a family of gene transcription models.","authors":"S Hossein Hosseini, Marc R Roussel","doi":"10.3934/mbe.2024273","DOIUrl":"https://doi.org/10.3934/mbe.2024273","url":null,"abstract":"<p><p>Models intended to describe the time evolution of a gene network must somehow include transcription, the DNA-templated synthesis of RNA, and translation, the RNA-templated synthesis of proteins. In eukaryotes, the DNA template for transcription can be very long, often consisting of tens of thousands of nucleotides, and lengthy pauses may punctuate this process. Accordingly, transcription can last for many minutes, in some cases hours. There is a long history of introducing delays in gene expression models to take the transcription and translation times into account. Here we study a family of detailed transcription models that includes initiation, elongation, and termination reactions. We establish a framework for computing the distribution of transcription times, and work out these distributions for some typical cases. For elongation, a fixed delay is a good model provided elongation is fast compared to initiation and termination, and there are no sites where long pauses occur. The initiation and termination phases of the model then generate a nontrivial delay distribution, and elongation shifts this distribution by an amount corresponding to the elongation delay. When initiation and termination are relatively fast, the distribution of elongation times can be approximated by a Gaussian. A convolution of this Gaussian with the initiation and termination time distributions gives another analytic approximation to the transcription time distribution. If there are long pauses during elongation, because of the modularity of the family of models considered, the elongation phase can be partitioned into reactions generating a simple delay (elongation through regions where there are no long pauses), and reactions whose distribution of waiting times must be considered explicitly (initiation, termination, and motion through regions where long pauses are likely). In these cases, the distribution of transcription times again involves a nontrivial part and a shift due to fast elongation processes.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6225-6262"},"PeriodicalIF":2.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feedback stabilization and observer design for sterile insect technique models.","authors":"Kala Agbo Bidi","doi":"10.3934/mbe.2024274","DOIUrl":"https://doi.org/10.3934/mbe.2024274","url":null,"abstract":"<p><p>This paper focuses on the feedback global stabilization and observer construction for a sterile insect technique model. The sterile insect technique (SIT) is one of the most ecological methods for controlling insect pests responsible for worldwide crop destruction and disease transmission. In this work, we construct a feedback law that globally asymptotically stabilizes an SIT model at extinction equilibrium. Since the application of this type of control requires the measurement of different states of the target insect population, and, in practice, some states are more difficult or more expensive to measure than others, it is important to know how to construct a state estimator, which from a few well-chosen measured states, estimates the other ones, as the one we build in the second part of our work. In the last part of our work, we show that we can apply the feedback control with estimated states to stabilize the full system.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6263-6288"},"PeriodicalIF":2.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}