Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.

IF 2.6 4区 工程技术 Q1 Mathematics
Mathematical Biosciences and Engineering Pub Date : 2025-01-01 Epub Date: 2024-12-25 DOI:10.3934/mbe.2025004
Sakorn Mekruksavanich, Wikanda Phaphan, Anuchit Jitpattanakul
{"title":"Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism.","authors":"Sakorn Mekruksavanich, Wikanda Phaphan, Anuchit Jitpattanakul","doi":"10.3934/mbe.2025004","DOIUrl":null,"url":null,"abstract":"<p><p>Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis require enhancement in the creation of dependable detection approaches. Despite advances in machine learning and deep learning, capturing the intricate spatial and temporal patterns in EEG data remains challenging. This study introduced a novel deep learning framework combining a convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU), and convolutional block attention module (CBAM). The CNN extracts spatial features, the BiGRU captures long-term temporal dependencies, and the CBAM emphasizes critical spatial and temporal regions, creating a hybrid architecture optimized for EEG pattern recognition. Evaluation of a public EEG dataset revealed superior performance compared to existing methods. The model achieved 99.00% accuracy in binary classification, 96.20% in three-class tasks, 92.00% in four-class scenarios, and 89.00% in five-class classification. High sensitivity (89.00-99.00%) and specificity (89.63-99.00%) across all tasks highlighted the model's robust ability to identify diverse EEG patterns. This approach supports healthcare professionals in diagnosing epileptic seizures accurately and promptly, improving patient outcomes and quality of life.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"73-105"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Epileptic seizures, a prevalent neurological condition, necessitate precise and prompt identification for optimal care. Nevertheless, the intricate characteristics of electroencephalography (EEG) signals, noise, and the want for real-time analysis require enhancement in the creation of dependable detection approaches. Despite advances in machine learning and deep learning, capturing the intricate spatial and temporal patterns in EEG data remains challenging. This study introduced a novel deep learning framework combining a convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU), and convolutional block attention module (CBAM). The CNN extracts spatial features, the BiGRU captures long-term temporal dependencies, and the CBAM emphasizes critical spatial and temporal regions, creating a hybrid architecture optimized for EEG pattern recognition. Evaluation of a public EEG dataset revealed superior performance compared to existing methods. The model achieved 99.00% accuracy in binary classification, 96.20% in three-class tasks, 92.00% in four-class scenarios, and 89.00% in five-class classification. High sensitivity (89.00-99.00%) and specificity (89.63-99.00%) across all tasks highlighted the model's robust ability to identify diverse EEG patterns. This approach supports healthcare professionals in diagnosing epileptic seizures accurately and promptly, improving patient outcomes and quality of life.

基于集成注意机制的增强型混合CNN脑电信号癫痫发作检测。
癫痫发作是一种常见的神经系统疾病,需要精确和及时的识别以获得最佳护理。然而,脑电图(EEG)信号的复杂特征、噪声和对实时分析的需求需要在可靠检测方法的创建方面得到加强。尽管机器学习和深度学习取得了进步,但在脑电图数据中捕获复杂的时空模式仍然具有挑战性。本研究提出了一种结合卷积神经网络(CNN)、双向门控循环单元(BiGRU)和卷积块注意模块(CBAM)的新型深度学习框架。CNN提取空间特征,BiGRU捕获长期时间依赖性,CBAM强调关键空间和时间区域,创建了一个优化的脑电模式识别的混合架构。对公开EEG数据集的评估显示,与现有方法相比,该方法具有更好的性能。该模型在二元分类中准确率达到99.00%,在三类任务中准确率为96.20%,在四类场景中准确率为92.00%,在五类场景中准确率为89.00%。所有任务的高灵敏度(89.00-99.00%)和特异性(89.63-99.00%)突出了该模型识别不同EEG模式的强大能力。这种方法支持医疗保健专业人员准确、及时地诊断癫痫发作,改善患者的预后和生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信