Mathematical Methods in the Applied Sciences最新文献

筛选
英文 中文
Global Dynamics of a Multiscale Immuno-Cholera Transmission Model With Bacterial Hyperinfectivity on Complex Networks 复杂网络上具有细菌高传染性的多尺度免疫-霍乱传播模型的全局动力学
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-26 DOI: 10.1002/mma.10646
Xinxin Cheng, Yi Wang, Gang Huang
{"title":"Global Dynamics of a Multiscale Immuno-Cholera Transmission Model With Bacterial Hyperinfectivity on Complex Networks","authors":"Xinxin Cheng, Yi Wang, Gang Huang","doi":"10.1002/mma.10646","DOIUrl":"https://doi.org/10.1002/mma.10646","url":null,"abstract":"<div>\u0000 \u0000 <p>The spread of cholera at the population level depends on the immunological characteristics of pathogens at the individual level. In addition, contact heterogeneity among individuals plays a significant role in cholera transmission. In this paper, we construct a multiscale coupled immuno-cholera model considering waning vaccine-induced immunity and hyperinfectious vibrios and utilize a nested approach to bridge within-host vibrio evolution and between-host cholera transmission on complex networks. The basic reproduction numbers \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>W</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {R}_0^W $$</annotation>\u0000 </semantics></math> and \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {R}_0^B $$</annotation>\u0000 </semantics></math> for the within- and between-host models are derived, respectively, and \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {R}_0^B $$</annotation>\u0000 </semantics></math> is validated to serve as a sharp threshold between extinction and persistence of cholera. Specifically, the global asymptotic stability of each feasible equilibrium for the between-host system is established by formulating appropriate Lyapunov functionals. Numerical simulations are performed to assess the influences of within-host vibrio dynamics and network topology on between-host cholera transmission dynamics. The results show that the equilibrium level of total infected individuals is a nonmonotonic function of vibrio growth rate, implying that hampering within-host vibrio growth by drug treatment during the outbreak could alter the long-term outcomes of cholera. Furthermore, the heterogeneity of network degree distributions increases the risk of cholera outbreaks, suggesting that isolation and supervision for infected in","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 5","pages":"5920-5945"},"PeriodicalIF":2.1,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Affine Fourier Transform on Tempered Distribution and Its Application 缓化分布上的特殊仿射傅里叶变换及其应用
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-26 DOI: 10.1002/mma.10657
Manish Kumar,  Bhawna
{"title":"Special Affine Fourier Transform on Tempered Distribution and Its Application","authors":"Manish Kumar,&nbsp; Bhawna","doi":"10.1002/mma.10657","DOIUrl":"https://doi.org/10.1002/mma.10657","url":null,"abstract":"<div>\u0000 \u0000 <p>The main aim of this work is to develop a theoretical framework for generalized pseudo-differential operators involving the special affine Fourier transform (SAFT), associated with a symbol \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>δ</mi>\u0000 <mo>(</mo>\u0000 <mi>μ</mi>\u0000 <mo>,</mo>\u0000 <mi>η</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$$ delta left(mu, eta right) $$</annotation>\u0000 </semantics></math>. Some important properties of the SAFT are established, and it is proved that the product of two generalized pseudo-differential operators is shown to be a generalized pseudo-differential operator. Further, we explore the practical applications of the SAFT in solving generalized partial differential equations, such as the generalized telegraph and wave equations, providing closed-form solutions. Furthermore, graphical visualizations for these solutions are illustrated via MATLAB R2023b.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 5","pages":"6092-6102"},"PeriodicalIF":2.1,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely Many Sign-Changing Solutions for a Schrödinger Equation With Competing Potentials 具有竞争势的Schrödinger方程的无穷多个变号解
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-26 DOI: 10.1002/mma.10727
Ke Wu, Kaijing Cheng, Fen Zhou
{"title":"Infinitely Many Sign-Changing Solutions for a Schrödinger Equation With Competing Potentials","authors":"Ke Wu,&nbsp;Kaijing Cheng,&nbsp;Fen Zhou","doi":"10.1002/mma.10727","DOIUrl":"https://doi.org/10.1002/mma.10727","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;Consider the following nonlinear problem with competing potentials: \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mtext&gt;in&lt;/mtext&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℝ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ -Delta u&amp;#x0002B;Pleft(&amp;#x0007C;y|right)u&amp;#x0003D;Qleft(&amp;#x0007C;y|right){left&amp;#x0007C;uright&amp;#x0007C;}&amp;#x0005E;{p-1}u,mathrm{in}kern0.3em {mathbb{R}}&amp;#x0005E;N $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ Nge 3,kern0.3em 1&amp;lt;p&amp;lt;frac{N&amp;#x0002B;2}{N-2} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6918-6929"},"PeriodicalIF":2.1,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Radial Basis Function-Hermite Finite Difference Method for the Two-Dimensional Distributed-Order Time-Fractional Cable Equation 二维分布阶时间-分数阶索方程的径向基函数- hermite有限差分法
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-23 DOI: 10.1002/mma.10696
Majid Haghi, Mohammad Ilati
{"title":"A Radial Basis Function-Hermite Finite Difference Method for the Two-Dimensional Distributed-Order Time-Fractional Cable Equation","authors":"Majid Haghi,&nbsp;Mohammad Ilati","doi":"10.1002/mma.10696","DOIUrl":"https://doi.org/10.1002/mma.10696","url":null,"abstract":"<div>\u0000 \u0000 <p>In this article, our main objective is to propose a high-order local meshless method for numerical solution of two-dimensional distributed-order time-fractional cable equation on both regular and irregular domains. First, the distribution-order integral is approximated by the Gauss-Legendre quadrature formula, and then a second-order weighted and shifted Grünwald difference (WSGD) scheme is applied to approximate the time Riemann-Liouville derivatives. The stability and convergence analysis of the time-discrete outline are investigated by the energy approach. The spatial dimension of the model is discretized by the fourth-order local radial basis function-Hermite finite difference (RBF-HFD) method. Some numerical experiments are performed on regular and irregular computational domains to verify the ability, efficiency, and accuracy of the proposed numerical procedure. The numerical simulations clearly demonstrate the high accuracy of the provided numerical process in comparison to existing procedures. Finally, it can be concluded that the presented technique is a suitable alternative to the existing numerical techniques for the distributed-order time-fractional cable equation.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6573-6585"},"PeriodicalIF":2.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Nonlinearities With Arbitrary-Order Derivatives on Dynamic Transitions 任意阶导数非线性对动态跃迁的影响
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-23 DOI: 10.1002/mma.10709
Taylan Şengül, Burhan Tiryakioglu
{"title":"The Effect of Nonlinearities With Arbitrary-Order Derivatives on Dynamic Transitions","authors":"Taylan Şengül,&nbsp;Burhan Tiryakioglu","doi":"10.1002/mma.10709","DOIUrl":"https://doi.org/10.1002/mma.10709","url":null,"abstract":"<div>\u0000 \u0000 <p>The primary objective of this paper is to classify the first transitions of a general class of one spatial dimensional nonlinear partial differential equations on a bounded interval. The linear part of the equation is assumed to have a real discrete spectrum with a complete set of eigenfunctions, which are of the form \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>sin</mi>\u0000 <mi>k</mi>\u0000 <mi>x</mi>\u0000 </mrow>\u0000 <annotation>$$ sin kx $$</annotation>\u0000 </semantics></math> or \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>cos</mi>\u0000 <mi>k</mi>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>k</mi>\u0000 <mo>∈</mo>\u0000 <mi>ℕ</mi>\u0000 </mrow>\u0000 <annotation>$$ cos kx,kern0.3em kin mathbb{N} $$</annotation>\u0000 </semantics></math>. The nonlinear operator consists of arbitrary finite products and sums of the unknown function and its derivatives of arbitrary order. The equations allow for a trivial steady-state solution that becomes unstable when a control parameter exceeds a certain threshold. Unlike most of the previous research in this direction that considers specific equations, this general framework is suitable for extension in several directions such as the higher spatial dimensions and different basis vectors. Under a set of assumptions that are often valid in many interesting applications, we derive two numbers called the transition number and the critical index which completely describe the first dynamic transition. We make detailed numerical computations that reveal the properties of the transition numbers. To show the applicability of our theoretical results, we determine the first transitions of several well-known equations including the Cahn–Hilliard, thin film, Harry Dym, Kawamoto, and Rosenau–Hyman equations.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6704-6716"},"PeriodicalIF":2.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semigroup Dynamics and Chaotic Behavior in Second-Order Partial Differential Equations on H1×L2 Space H1×L2空间上二阶偏微分方程的半群动力学和混沌行为
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-23 DOI: 10.1002/mma.10675
Manal Menchih, Khalid Hilal, Ahmed Kajouni
{"title":"Semigroup Dynamics and Chaotic Behavior in Second-Order Partial Differential Equations on \u0000H1×L2 Space","authors":"Manal Menchih,&nbsp;Khalid Hilal,&nbsp;Ahmed Kajouni","doi":"10.1002/mma.10675","DOIUrl":"https://doi.org/10.1002/mma.10675","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;This paper focuses on the dynamics of a second-order partial differential equation within the space \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {L}&amp;#x0005E;2 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; described by \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;ϑ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;ϑ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mi&gt;ϑ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;ϑ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6335-6341"},"PeriodicalIF":2.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Moving Least Square With Particle Swarm Optimization to Solve Nonlinear Transient Convective–Radiative Heat Transfer Problems in the Existence of a Magnetic Field 用移动最小二乘法和粒子群优化求解存在磁场的非线性瞬态对流辐射换热问题
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-22 DOI: 10.1002/mma.10650
M. J. Mahmoodabadi, M. Atashafrooz, M. Yousef Ibrahim
{"title":"Using Moving Least Square With Particle Swarm Optimization to Solve Nonlinear Transient Convective–Radiative Heat Transfer Problems in the Existence of a Magnetic Field","authors":"M. J. Mahmoodabadi,&nbsp;M. Atashafrooz,&nbsp;M. Yousef Ibrahim","doi":"10.1002/mma.10650","DOIUrl":"https://doi.org/10.1002/mma.10650","url":null,"abstract":"<div>\u0000 \u0000 <p>In the current research, a novel hybrid scheme is proposed to solve nonlinear equations arising in heat transfer through the combination of meta-heuristic algorithms and interpolation methods. In order to define a proper objective function for minimization by particle swarm optimization (PSO), the constrained problem is converted into an unconstrained one through the penalty method. Furthermore, the moving least square (MLS) technique is implemented to interpolate and approximate the derivatives appeared in the equation. The main problem for challenging this combined scheme is nonlinear transient convective–radiative heat transfer in existence of a magnetic field. To study the efficiency of the MLS, the results would be contrasted with those extracted by a finite difference method (FDM) based PSO approach. Through five distinctive examples, the evolutionary diagrams as well as temperature distributions found by different methods are displayed, and the effects of the constant parameters are investigated. Besides, the simulations of this research work clearly depict good agreements of the numerical results obtained by the suggested idea with those reported in literature.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 5","pages":"5987-5997"},"PeriodicalIF":2.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely Many Positive Nonradial Solutions for the Kirchhoff Equation Kirchhoff方程的无穷多正非径向解
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-22 DOI: 10.1002/mma.10718
Hui Guo, Boling Tang, Tao Wang
{"title":"Infinitely Many Positive Nonradial Solutions for the Kirchhoff Equation","authors":"Hui Guo,&nbsp;Boling Tang,&nbsp;Tao Wang","doi":"10.1002/mma.10718","DOIUrl":"https://doi.org/10.1002/mma.10718","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;We are concerned with the existence of positive nonradial solutions to the following Kirchhoff equation: \u0000\u0000 &lt;/p&gt;&lt;div&gt;&lt;span&gt;&lt;!--FIGURE--&gt;\u0000 &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtable&gt;\u0000 &lt;mtr&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∫&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℝ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;∇&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6830-6843"},"PeriodicalIF":2.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
G-Convergence of Friedrichs Systems Revisited Friedrichs系统的g -收敛性
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-22 DOI: 10.1002/mma.10656
K. Burazin, M. Erceg, M. Waurick
{"title":"G-Convergence of Friedrichs Systems Revisited","authors":"K. Burazin,&nbsp;M. Erceg,&nbsp;M. Waurick","doi":"10.1002/mma.10656","DOIUrl":"https://doi.org/10.1002/mma.10656","url":null,"abstract":"<p>We revisit the homogenization theory for Friedrichs systems. In particular, we show that \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$$ G $$</annotation>\u0000 </semantics></math>-compactness can be obtained under severely weaker assumptions than in the original work of Burazin and Vrdoljak (2014). In this way, we extend the applicability of \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$$ G $$</annotation>\u0000 </semantics></math>-compactness results for Friedrichs systems to equations that yield memory effects in the homogenized limit and detour any usage of compactness techniques previously employed.</p><p><b>MSC2020 Classification:</b> 35B27, 35F45, 35M32, 47F05</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 5","pages":"6081-6091"},"PeriodicalIF":2.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10656","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential Stability of Higher Order Fractional Neutral Stochastic Differential Equation Via Integral Contractors 高阶分数中立型随机微分方程的积分契约指数稳定性
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-22 DOI: 10.1002/mma.10681
Dimplekumar N. Chalishajar, Dhanalakshmi Kasinathan, Ramkumar Kasinathan, Ravikumar Kasinathan
{"title":"Exponential Stability of Higher Order Fractional Neutral Stochastic Differential Equation Via Integral Contractors","authors":"Dimplekumar N. Chalishajar,&nbsp;Dhanalakshmi Kasinathan,&nbsp;Ramkumar Kasinathan,&nbsp;Ravikumar Kasinathan","doi":"10.1002/mma.10681","DOIUrl":"https://doi.org/10.1002/mma.10681","url":null,"abstract":"<p>The well-posedness results for mild solutions to the fractional neutral stochastic differential system with Rosenblatt process with Hurst index \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ĥ</mi>\u0000 <mo>∈</mo>\u0000 <mfenced>\u0000 <mrow>\u0000 <mfrac>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </mfrac>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mfenced>\u0000 </mrow>\u0000 <annotation>$$ hat{H}in left(frac{1}{2},1right) $$</annotation>\u0000 </semantics></math> is discussed in this article. To demonstrate the results, the concept of bounded integral contractors is combined with the stochastic result and sequencing technique. In contrast to previous publications, we do not need to specify the induced inverse of the controllability operator to prove the stability results, and the relevant nonlinear function does not have to meet the Lipschitz condition. Furthermore, exponential stability results for neutral stochastic differential systems with Poisson jump have been established. Finally, an application to demonstrate the acquired results is discussed. We demonstrate the fractional Zener model for wave equation obeying the viscoelastic materials as a practical application of the system studied, which is a generalization of classical wave equation.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6425-6446"},"PeriodicalIF":2.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10681","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信