{"title":"Fractional Newton-type integral inequalities for the Caputo fractional operator","authors":"Yukti Mahajan, Harish Nagar","doi":"10.1002/mma.10600","DOIUrl":"https://doi.org/10.1002/mma.10600","url":null,"abstract":"<p>In this paper, we present a set of Newton-type inequalities for <i>n</i>-times differentiable convex functions using the Caputo fractional operator, extending classical results into the fractional calculus domain. Our exploration also includes the derivation of Newton-type inequalities for various classes of functions by employing the Caputo fractional operator, thereby broadening the scope of these inequalities beyond convexity. In addition, we establish several fractional Newton-type inequalities by using bounded functions in conjunction with fractional integrals. Furthermore, we develop specific fractional Newton-type inequalities tailored to Lipschitzian functions. Moreover, the paper emphasizes the significance of fractional calculus in refining classical inequalities and demonstrates how the Caputo fractional operator provides a more generalized framework for addressing problems involving non-integer order differentiation. The inclusion of bounded and Lipschitzian functions introduces additional layers of complexity, allowing for a more comprehensive analysis of function behaviors under fractional operations.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"5244-5254"},"PeriodicalIF":2.1,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. C. M. Pereira, B. A. Carmo, M. A. Rincon, R. F. Apolaya
{"title":"Theoretical and numerical study of a Burgers viscous equation type with moving boundary","authors":"L. C. M. Pereira, B. A. Carmo, M. A. Rincon, R. F. Apolaya","doi":"10.1002/mma.10601","DOIUrl":"https://doi.org/10.1002/mma.10601","url":null,"abstract":"<p>In this article, we investigate the existence, uniqueness, and numerical aspects of a one- and two-dimensional nonlinear viscous type Burgers problem defined in a noncylindrical domain. In order to obtain the existence and uniqueness of the solution, the problem with a moving ends is transformed into an equivalent problem in a cylindrical through a diffeomorphism between the domains. The numerical simulation for the one- and two-dimensional cases is performed using Lagrange with degrees 1–3 and cubic Hermite polynomials as base functions for applying the linearized Crank–Nicolson–Galerkin method to obtain an approximate numerical solution. Graphs prove the efficiency of the numerical method along with the order of numerical convergence consistent with the degree of the base polynomial.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"5255-5277"},"PeriodicalIF":2.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New multilinear Littlewood–Paley \u0000gλ∗ function and commutator on weighted Lebesgue spaces","authors":"Huimin Sun, Shuhui Yang, Yan Lin","doi":"10.1002/mma.10587","DOIUrl":"https://doi.org/10.1002/mma.10587","url":null,"abstract":"<p>Via the new weight function \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mover>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <mo>→</mo>\u0000 </mover>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>θ</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 <mo>(</mo>\u0000 <mi>φ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$$ {A}_{overrightarrow{p}}&amp;amp;#x0005E;{theta}left(varphi right) $$</annotation>\u0000 </semantics></math>, the authors introduce a new class of multilinear Littlewood–Paley \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>∗</mo>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {g}_{lambda}&amp;amp;#x0005E;{ast } $$</annotation>\u0000 </semantics></math> functions and establish the boundedness on weighted Lebesgue spaces. In addition, the authors obtain the boundedness of the multilinear commutator and multilinear iterated commutator generated by the multilinear Littlewood–Paley \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>∗</mo>\u0000 </mrow>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {g}_{lambda}&amp;amp;#x0005E;{ast } $$</annotation>\u0000 </semantics></math> function and the new \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mi>M</mi>\u0000 <mi>O</mi>\u0000 </mrow>\u0000 <annotation>$$ BMO $$</annotation>\u0000 </semantics></math> function on weighted Lebesgue spaces. The results in this article include the known results in previous studies. When \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$$ m&amp;amp;#x0003D;1 $$</annotation>\u0000 </semantics></math>, that is, in the case of one linear, our conclusions are also new, further ext","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"4980-5006"},"PeriodicalIF":2.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}