八元双曲傅里叶变换

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Youssef El Haoui
{"title":"八元双曲傅里叶变换","authors":"Youssef El Haoui","doi":"10.1002/mma.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The three-dimensional octonionic hyperbolic Fourier transform (OHFT) is introduced as a hypercomplex integral Fourier transform associated with three-dimensional octonion-valued signals defined within an open rectangular prism \n<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>×</mo>\n <mo>(</mo>\n <mo>−</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>×</mo>\n <mo>(</mo>\n <mo>−</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left(-{t}_1,{t}_1\\right)\\times \\left(-{t}_2,{t}_2\\right)\\times \\left(-{t}_3,{t}_3\\right) $$</annotation>\n </semantics></math>, where \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {t}_1,{t}_2,{t}_3\\in {\\mathbb{R}}&amp;amp;#x0005E;{&amp;amp;#x0002B;} $$</annotation>\n </semantics></math>, in Euclidean space \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}&amp;amp;#x0005E;3 $$</annotation>\n </semantics></math>, equipped with a hyperbolic measure. This new transform reduces to the octonion Fourier transform when \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n </mrow>\n <annotation>$$ {t}_1,{t}_2, $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>t</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {t}_3 $$</annotation>\n </semantics></math> tend to \n<span></span><math>\n <semantics>\n <mrow>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$$ &amp;amp;#x0002B;\\infty $$</annotation>\n </semantics></math>. The purpose of this paper is to define the OHFT and establish its fundamental properties, including linearity, hyperbolic modulation, scaling, reflection, the inversion formula, Plancherel's theorem, Parseval's formula, the Hausdorff–Young inequality, and partial derivatives for three-dimensional hyperbolic octonion functions. I also demonstrate the application of the OHFT in solving two linear partial differential equations within the octonionic hyperbolic framework and extend the Heisenberg–Weyl uncertainty principle to the OHFT domain.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 16","pages":"15433-15451"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Octonionic Hyperbolic Fourier Transform\",\"authors\":\"Youssef El Haoui\",\"doi\":\"10.1002/mma.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The three-dimensional octonionic hyperbolic Fourier transform (OHFT) is introduced as a hypercomplex integral Fourier transform associated with three-dimensional octonion-valued signals defined within an open rectangular prism \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mo>(</mo>\\n <mo>−</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>×</mo>\\n <mo>(</mo>\\n <mo>−</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left(-{t}_1,{t}_1\\\\right)\\\\times \\\\left(-{t}_2,{t}_2\\\\right)\\\\times \\\\left(-{t}_3,{t}_3\\\\right) $$</annotation>\\n </semantics></math>, where \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {t}_1,{t}_2,{t}_3\\\\in {\\\\mathbb{R}}&amp;amp;#x0005E;{&amp;amp;#x0002B;} $$</annotation>\\n </semantics></math>, in Euclidean space \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathbb{R}}&amp;amp;#x0005E;3 $$</annotation>\\n </semantics></math>, equipped with a hyperbolic measure. This new transform reduces to the octonion Fourier transform when \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n </mrow>\\n <annotation>$$ {t}_1,{t}_2, $$</annotation>\\n </semantics></math> and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {t}_3 $$</annotation>\\n </semantics></math> tend to \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$$ &amp;amp;#x0002B;\\\\infty $$</annotation>\\n </semantics></math>. The purpose of this paper is to define the OHFT and establish its fundamental properties, including linearity, hyperbolic modulation, scaling, reflection, the inversion formula, Plancherel's theorem, Parseval's formula, the Hausdorff–Young inequality, and partial derivatives for three-dimensional hyperbolic octonion functions. I also demonstrate the application of the OHFT in solving two linear partial differential equations within the octonionic hyperbolic framework and extend the Heisenberg–Weyl uncertainty principle to the OHFT domain.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 16\",\"pages\":\"15433-15451\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.70027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.70027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

三维八元双曲傅里叶变换(OHFT)作为一个超复积分傅里叶变换引入,该变换与定义在开放矩形棱镜内的三维八元值信号相关(- t1,t1) × (- t2)t2) × (- t3)3) $$ \left(-{t}_1,{t}_1\right)\times \left(-{t}_2,{t}_2\right)\times \left(-{t}_3,{t}_3\right) $$ ,其中t1 t2,t3∈T + $$ {t}_1,{t}_2,{t}_3\in {\mathbb{R}}&amp;#x0005E;{&amp;#x0002B;} $$ ,在欧几里德空间中 $$ {\mathbb{R}}&amp;#x0005E;3 $$ ,配有双曲度量。这个新变换简化为八元傅里叶变换当t1 t2, $$ {t}_1,{t}_2, $$ t3 $$ {t}_3 $$ 趋于+∞ $$ &amp;#x0002B;\infty $$ 。本文的目的是定义OHFT并建立其基本性质,包括线性、双曲调制、标度、反射、反演公式、Plancherel定理、Parseval公式、Hausdorff-Young不等式和三维双曲八元函数的偏导数。我还演示了OHFT在求解八元双曲框架内的两个线性偏微分方程中的应用,并将Heisenberg-Weyl不确定性原理扩展到OHFT领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Octonionic Hyperbolic Fourier Transform

Octonionic Hyperbolic Fourier Transform

The three-dimensional octonionic hyperbolic Fourier transform (OHFT) is introduced as a hypercomplex integral Fourier transform associated with three-dimensional octonion-valued signals defined within an open rectangular prism ( t 1 , t 1 ) × ( t 2 , t 2 ) × ( t 3 , t 3 ) $$ \left(-{t}_1,{t}_1\right)\times \left(-{t}_2,{t}_2\right)\times \left(-{t}_3,{t}_3\right) $$ , where t 1 , t 2 , t 3 + $$ {t}_1,{t}_2,{t}_3\in {\mathbb{R}}&amp;#x0005E;{&amp;#x0002B;} $$ , in Euclidean space 3 $$ {\mathbb{R}}&amp;#x0005E;3 $$ , equipped with a hyperbolic measure. This new transform reduces to the octonion Fourier transform when t 1 , t 2 , $$ {t}_1,{t}_2, $$ and t 3 $$ {t}_3 $$ tend to + $$ &amp;#x0002B;\infty $$ . The purpose of this paper is to define the OHFT and establish its fundamental properties, including linearity, hyperbolic modulation, scaling, reflection, the inversion formula, Plancherel's theorem, Parseval's formula, the Hausdorff–Young inequality, and partial derivatives for three-dimensional hyperbolic octonion functions. I also demonstrate the application of the OHFT in solving two linear partial differential equations within the octonionic hyperbolic framework and extend the Heisenberg–Weyl uncertainty principle to the OHFT domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信