Mathematical Methods in the Applied Sciences最新文献

筛选
英文 中文
Robust H∞ Filter Design for Uncertain 2-D Singular Continuous Systems With State-Varying Delay in Roesser Model
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10673
El Hafid Chelliq, Khalid Badie, Mohammed Alfidi, Zakaria Chalh
{"title":"Robust \u0000H∞ Filter Design for Uncertain 2-D Singular Continuous Systems With State-Varying Delay in Roesser Model","authors":"El Hafid Chelliq,&nbsp;Khalid Badie,&nbsp;Mohammed Alfidi,&nbsp;Zakaria Chalh","doi":"10.1002/mma.10673","DOIUrl":"https://doi.org/10.1002/mma.10673","url":null,"abstract":"<div>\u0000 \u0000 <p>Robust \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {H}_{infty } $$</annotation>\u0000 </semantics></math> performance analysis and robust \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {H}_{infty } $$</annotation>\u0000 </semantics></math> filtering design are considered here for uncertain two-dimensional (2-D) singular continuous state-varying delay systems with norm-bounded parameter uncertainties. Based on the augmented Lyapunov-Krasovskii functional (LKF) with triple integral terms and the use of the Wirtinger inequality combined with an improved reciprocally convex approach, a new sufficient admissibility condition is obtained, which guarantees that the 2-D singular filtering error is regular, causal, and stable and satisfies the \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {H}_{infty } $$</annotation>\u0000 </semantics></math> performance for all admissible uncertainties. This condition will be used later to design a robust \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {H}_{infty } $$</annotation>\u0000 </semantics></math> filter. Finally, two numerical examples are provided to demonstrate the effectiveness and merits of the proposed approach.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6303-6322"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of the Rao–Nakra Sandwich Beam With a Dissipation of Fractional Derivative Type: Theoretical and Numerical Study
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10707
K. Ammari, V. Komornik, M. Sepúlveda, O. Vera
{"title":"Stability of the Rao–Nakra Sandwich Beam With a Dissipation of Fractional Derivative Type: Theoretical and Numerical Study","authors":"K. Ammari,&nbsp;V. Komornik,&nbsp;M. Sepúlveda,&nbsp;O. Vera","doi":"10.1002/mma.10707","DOIUrl":"https://doi.org/10.1002/mma.10707","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper is devoted to the solution and stability of a one-dimensional model depicting Rao–Nakra sandwich beams, incorporating damping terms characterized by fractional derivative types within the domain, specifically a generalized Caputo derivative with exponential weight. To address existence, uniqueness, stability, and numerical results, fractional derivatives are substituted by diffusion equations relative to a new independent variable, \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ξ</mi>\u0000 </mrow>\u0000 <annotation>$$ xi $$</annotation>\u0000 </semantics></math>, resulting in an augmented model with a dissipative semigroup operator. Polynomial decay of energy is achieved, with a decay rate depending on the fractional derivative parameters. Both the polynomial decay and its dependency on the parameters of the generalized Caputo derivative are numerically validated. To this end, an energy-conserving finite difference numerical scheme is employed.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6678-6690"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalences of Nonlinear Higher Order Fractional Differential Equations With Integral Equations
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10728
Kunquan Lan
{"title":"Equivalences of Nonlinear Higher Order Fractional Differential Equations With Integral Equations","authors":"Kunquan Lan","doi":"10.1002/mma.10728","DOIUrl":"https://doi.org/10.1002/mma.10728","url":null,"abstract":"<p>Equivalences of initial value problems (IVPs) of both nonlinear higher order (Riemann–Liouville type) fractional differential equations (FDEs) and Caputo FDEs with the corresponding integral equations are studied in this paper. It is proved that the nonlinearities in the FDEs can be \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {L}&amp;#x0005E;1 $$</annotation>\u0000 </semantics></math>-Carathéodory with suitable conditions. The new results generalize the previous results which assumed that the nonlinearities are continuous. For the Caputo FDEs, it is shown in this paper that the continuity assumptions on the nonlinearities used in the literature before are not sufficient for the obtained equivalences. A counterexample is provided to exhibit this. The previous equivalence results with the continuity assumptions alone in the literature have been widely used to study the existence of solutions and numerical solutions of the Caputo FDEs up to now, so according to the new results obtained in this paper, there are no guarantees that the solutions of the integral equations obtained in the literature are the solutions of the Caputo FDEs. New conditions which are stronger than continuity are provided to ensure the equivalences. Sufficient conditions for solutions of the integral equations to be solutions of the Caputo FDEs are obtained. The new equivalence results and the sufficient conditions will be useful for further studying the existence of solutions and numerical solutions of the nonlinear Caputo FDEs via the corresponding integral equations.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6930-6942"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10728","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of Soliton Solutions for the Kaup–Newell Model Using Two Integration Schemes in Mathematical Physics
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10684
Bahadır Kopçasız, Fatma Nur Kaya Sağlam
{"title":"Exploration of Soliton Solutions for the Kaup–Newell Model Using Two Integration Schemes in Mathematical Physics","authors":"Bahadır Kopçasız,&nbsp;Fatma Nur Kaya Sağlam","doi":"10.1002/mma.10684","DOIUrl":"https://doi.org/10.1002/mma.10684","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;This research deals with the Kaup–Newell model, a class of nonlinear Schrödinger equations with important applications in plasma physics and nonlinear optics. Soliton solutions are essential for analyzing nonlinear wave behaviors in different physical systems, and the Kaup–Newell model is also significant in this context. The model's ability to represent subpicosecond pulses makes it a significant tool for the research of nonlinear optics and plasma physics. Overall, the Kaup–Newell model is an important research domain in these areas, with ongoing efforts focused on understanding its various solutions and potential applications. A new version of the generalized exponential rational function method and \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ left(frac{G&amp;#x0005E;{prime }}{G&amp;#x0005E;2}right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-expansion function method are utilized to discover diverse soliton solutions. The generalized exponential rational function method facilitates the generation of multiple solution types, including singular, shock, singular periodic, exponential, combo trigonometric, and hyperbolic solutions in mixed forms. Thanks to \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6477-6487"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Geometric Interpretation for the Algebraic Properties of Second-Order Ordinary Differential Equations
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10726
A. Paliathanasis, S. Moyo, P. G. L. Leach
{"title":"A Geometric Interpretation for the Algebraic Properties of Second-Order Ordinary Differential Equations","authors":"A. Paliathanasis,&nbsp;S. Moyo,&nbsp;P. G. L. Leach","doi":"10.1002/mma.10726","DOIUrl":"https://doi.org/10.1002/mma.10726","url":null,"abstract":"<p>Nowadays, a substantial portion of investigations concerning the symmetry analysis of differential equations predominantly adhere to a framework comprising the following key procedures: (i) the derivation of symmetries, (ii) the determination of an optimal system, (iii) the utilization of these symmetries to construct invariants or conservation laws, facilitating reductions, and where applicable, (iv) the construction of solutions. This reinforces the understanding of symmetry analysis and explores the application of differential geometry and physics to the analysis of selected problems. A demonstration of the utility of symmetries in offering concise solutions for previously extensively studied problems is given with the specific linearization of the Ermakov–Pinney equation and that of another nonmaximal symmetric equation, showcasing how differential geometry can chart novel pathways in the realm of symmetry analysis is given.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6912-6917"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10726","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to A Fractional Sideways Problem in a One-Dimensional Finite-Slab With Deterministic and Random Interior Perturbed Data
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10703
{"title":"Correction to A Fractional Sideways Problem in a One-Dimensional Finite-Slab With Deterministic and Random Interior Perturbed Data","authors":"","doi":"10.1002/mma.10703","DOIUrl":"https://doi.org/10.1002/mma.10703","url":null,"abstract":"<p>Duc Trong D, Hong Nhung NT, Dang Minh N, Nhu Lan N. A fractional sideways problem in a one-dimensional finite-slab with deterministic and random interior perturbed data. Math Meth Appl Sci. 2020; 43(8): 5314–5338. https://doi.org/10.1002/mma.6272</p><p>The affiliation of the first and second authors should read as “Faculty of Mathematics and Computer Science, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam (VNU-HCM).”</p><p>We apologize for this error.</p><p>The online article has also been corrected.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6975"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Compact Difference Scheme for Mixed-Type Time-Fractional Black-Scholes Equation in European Option Pricing
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10717
Jiawei Wang, Xiaoxuan Jiang, Xuehua Yang, Haixiang Zhang
{"title":"A Compact Difference Scheme for Mixed-Type Time-Fractional Black-Scholes Equation in European Option Pricing","authors":"Jiawei Wang,&nbsp;Xiaoxuan Jiang,&nbsp;Xuehua Yang,&nbsp;Haixiang Zhang","doi":"10.1002/mma.10717","DOIUrl":"https://doi.org/10.1002/mma.10717","url":null,"abstract":"<div>\u0000 \u0000 <p>The time-fractional Black-Scholes equation (TFBSE) is an important model in financial markets, widely used for estimating the prices of European options under conditions of memory effects and anomalous diffusion. Traditional models often fail to capture such dynamics, making TFBSE particularly important for accurately reflecting market behaviors over time. In this paper, we propose a novel compact difference scheme to solve the mixed-type TFBSE. Discretization in the time direction is accomplished using the L1 scheme. To achieve fourth-order discretization in the spatial direction, a compact difference method based on the reduced-order method is employed. The stability and convergence of the proposed scheme under the \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ {L}&amp;#x0005E;{infty } $$</annotation>\u0000 </semantics></math> norm are established using the discrete energy method. Finally, a series of numerical examples are provided to verify the theoretical results, demonstrating both the accuracy and efficiency of the method in practical applications.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6818-6829"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic Gompertzian Model for Parathyroid Tumor Growth
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10715
Tugcem Partal, Mustafa Bayram
{"title":"Stochastic Gompertzian Model for Parathyroid Tumor Growth","authors":"Tugcem Partal,&nbsp;Mustafa Bayram","doi":"10.1002/mma.10715","DOIUrl":"https://doi.org/10.1002/mma.10715","url":null,"abstract":"<p>In this paper, we study on the behavior and growth of parathyroid tumor in the human body. We investigate the change of parathyroid cancer cell with respect to time, obtained from the deterministic Gompertz model through 41 actual patients in the literature. Then we describe the stochastic Gompertz model based on deterministic Gompertz law and obtain the diffusion coefficient for our stochastic model, using the data taken from the patients. We compare the stochastic and deterministic results at the same graph. Also, we numerically solve the defined stochastic differential using the Euler–Maruyama, Milstein, stochastic Runge–Kutta, and Taylor methods. Finally, we demonstrate the effectiveness of each of these methods using graphs and error table.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6788-6798"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Equivalent Statements and Operator Expression for a Hilbert-Type Integral Inequality With a Finite Product Kernel
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10725
Yingdi Liu, Qiong Liu
{"title":"The Equivalent Statements and Operator Expression for a Hilbert-Type Integral Inequality With a Finite Product Kernel","authors":"Yingdi Liu,&nbsp;Qiong Liu","doi":"10.1002/mma.10725","DOIUrl":"https://doi.org/10.1002/mma.10725","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;By introducing multiple parameters, employing the weight function method based on the “Hardy interpolation problem” and some real analysis techniques, a general Hilbert-type integral inequality with the kernel as \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∏&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ kleft(x,yright):&amp;#x0003D; frac{e&amp;#x0005E;{-alpha xy}}{prod_{i&amp;#x0003D;1}&amp;#x0005E;nleft(1&amp;#x0002B;{a}_i xyright)}left({a}_i&amp;gt;0right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is established. The necessary and sufficient condition for the constant factor of the general inequality to be the best possible is identified; the equivalent inequality with the best possible constant factor is obtained. A Hilbert-type singular integral operator is defined and utilized to character","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6904-6911"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability Analysis of Stochastic Benjamin–Bona–Mahony Equation With Poisson Jumps
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-01-20 DOI: 10.1002/mma.10729
Rajesh Dhayal
{"title":"Stability Analysis of Stochastic Benjamin–Bona–Mahony Equation With Poisson Jumps","authors":"Rajesh Dhayal","doi":"10.1002/mma.10729","DOIUrl":"https://doi.org/10.1002/mma.10729","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper develops a new class of stochastic Benjamin-Bona-Mahony equations with Poisson jumps, which is a third-order nonlinear partial differential equation describing wave propagation. First, we established the existence of mild solutions for the considered problem under the non-Lipschitz conditions. Moreover, we investigate the asymptotic behavior of mild solutions for the proposed system. The outcomes are formulated and proved using the successive approximation approach and Bihari inequality. Finally, an illustrative example is given to demonstrate the obtained results.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 6","pages":"6943-6952"},"PeriodicalIF":2.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信