塔式结晶器种群平衡模型正解的存在唯一性

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Elias G. Saleeby, Nima Rabiei
{"title":"塔式结晶器种群平衡模型正解的存在唯一性","authors":"Elias G. Saleeby,&nbsp;Nima Rabiei","doi":"10.1002/mma.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, we prove the existence and uniqueness of positive/nonnegative solutions on \n<span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left[0,\\infty \\right) $$</annotation>\n </semantics></math> of population balance models for column crystallizers. These solutions represent the crystal size distributions in the stages of the column. We first investigate a system of ODEs model for a column with no particle agglomeration. Then we consider a system of integrodifferential equations (IDEs) model that accounts for particle agglomeration. In this case, we turn a boundary value problem for a Fredholm-Volterra system of IDEs into an initial value problem of Volterra type IDEs coupled with a system of algebraic equations. We obtain our results employing some algebraic facts along with the Brouwer and the Schauder's fixed point theorems.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 16","pages":"15523-15532"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Existence and Uniqueness of Positive Solutions to Population Balance Models for Column Crystallizers\",\"authors\":\"Elias G. Saleeby,&nbsp;Nima Rabiei\",\"doi\":\"10.1002/mma.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this article, we prove the existence and uniqueness of positive/nonnegative solutions on \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left[0,\\\\infty \\\\right) $$</annotation>\\n </semantics></math> of population balance models for column crystallizers. These solutions represent the crystal size distributions in the stages of the column. We first investigate a system of ODEs model for a column with no particle agglomeration. Then we consider a system of integrodifferential equations (IDEs) model that accounts for particle agglomeration. In this case, we turn a boundary value problem for a Fredholm-Volterra system of IDEs into an initial value problem of Volterra type IDEs coupled with a system of algebraic equations. We obtain our results employing some algebraic facts along with the Brouwer and the Schauder's fixed point theorems.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 16\",\"pages\":\"15523-15532\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.70032\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.70032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了塔式结晶器种群平衡模型在[0,∞)$$ \left[0,\infty \right) $$上正/非负解的存在唯一性。这些溶液代表了柱级中晶体尺寸的分布。我们首先研究了一个无颗粒团聚柱的ODEs模型系统。然后,我们考虑了一个系统的积分微分方程(IDEs)模型,说明粒子团聚。在这种情况下,我们把一类非线性非线性方程的Fredholm-Volterra系统的边值问题转化为一个与代数方程组耦合的Volterra型非线性方程的初值问题。我们利用一些代数事实以及布劳威尔不动点定理和绍德不动点定理得到了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Existence and Uniqueness of Positive Solutions to Population Balance Models for Column Crystallizers

On Existence and Uniqueness of Positive Solutions to Population Balance Models for Column Crystallizers

In this article, we prove the existence and uniqueness of positive/nonnegative solutions on [ 0 , ) $$ \left[0,\infty \right) $$ of population balance models for column crystallizers. These solutions represent the crystal size distributions in the stages of the column. We first investigate a system of ODEs model for a column with no particle agglomeration. Then we consider a system of integrodifferential equations (IDEs) model that accounts for particle agglomeration. In this case, we turn a boundary value problem for a Fredholm-Volterra system of IDEs into an initial value problem of Volterra type IDEs coupled with a system of algebraic equations. We obtain our results employing some algebraic facts along with the Brouwer and the Schauder's fixed point theorems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信