广义Bernstein-Kantorovich算子的定量估计

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Behar Baxhaku, P. N. Agrawal
{"title":"广义Bernstein-Kantorovich算子的定量估计","authors":"Behar Baxhaku,&nbsp;P. N. Agrawal","doi":"10.1002/mma.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces a Kantorovich-type modification of the generalized Bernstein polynomials proposed by Cao (J Math Anal Appl 209:140–146, 1997). We investigate the convergence properties of these operators, establishing necessary and sufficient conditions for uniform convergence and deriving quantitative estimates for the rate of convergence in terms of the Ditzian–Totik unified modulus of smoothness. Furthermore, we establish an inverse approximation theorem that characterizes the smoothness of the function based on the rate of convergence of the operators. We extend our analysis to the \n<span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow></math>-norm setting, proving the convergence of the operators for functions in \n<span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n <mo>,</mo>\n <mspace></mspace>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow></math> and providing quantitative estimates for the rate of convergence in the \n<span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow></math>-norm, utilizing the integral modulus of smoothness. Numerical simulations demonstrate the effectiveness of the proposed operators. We observe rapid convergence in practical examples, with significant error reduction as the number of basis functions (\n<span></span><math>\n <mrow>\n <mi>n</mi>\n </mrow></math>) increases. These findings are supported by detailed numerical experiments and visual representations, showcasing the practical applicability of the operators.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 16","pages":"15493-15505"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Estimates for Generalized Bernstein–Kantorovich Operators\",\"authors\":\"Behar Baxhaku,&nbsp;P. N. Agrawal\",\"doi\":\"10.1002/mma.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper introduces a Kantorovich-type modification of the generalized Bernstein polynomials proposed by Cao (J Math Anal Appl 209:140–146, 1997). We investigate the convergence properties of these operators, establishing necessary and sufficient conditions for uniform convergence and deriving quantitative estimates for the rate of convergence in terms of the Ditzian–Totik unified modulus of smoothness. Furthermore, we establish an inverse approximation theorem that characterizes the smoothness of the function based on the rate of convergence of the operators. We extend our analysis to the \\n<span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow></math>-norm setting, proving the convergence of the operators for functions in \\n<span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow></math> and providing quantitative estimates for the rate of convergence in the \\n<span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow></math>-norm, utilizing the integral modulus of smoothness. Numerical simulations demonstrate the effectiveness of the proposed operators. We observe rapid convergence in practical examples, with significant error reduction as the number of basis functions (\\n<span></span><math>\\n <mrow>\\n <mi>n</mi>\\n </mrow></math>) increases. These findings are supported by detailed numerical experiments and visual representations, showcasing the practical applicability of the operators.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 16\",\"pages\":\"15493-15505\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.70030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.70030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了Cao提出的广义Bernstein多项式的一种kantorovich型修正(数学学报,2009:140 - 146,1997)。我们研究了这些算子的收敛性,建立了一致收敛的充分必要条件,并根据光滑的Ditzian-Totik统一模给出了收敛速度的定量估计。进一步,我们建立了一个逆逼近定理,该定理基于算子的收敛速度来表征函数的平滑性。我们将分析扩展到L p -范数集合,证明了L p[0]中函数的算子的收敛性。1], 1≤p <∞,并利用平滑度的积分模对L p -范数的收敛速率提供定量估计。数值仿真验证了所提算子的有效性。我们在实际示例中观察到快速收敛,随着基函数(n)数量的增加,误差显著减小。这些发现得到了详细的数值实验和可视化表示的支持,展示了算子的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative Estimates for Generalized Bernstein–Kantorovich Operators

Quantitative Estimates for Generalized Bernstein–Kantorovich Operators

This paper introduces a Kantorovich-type modification of the generalized Bernstein polynomials proposed by Cao (J Math Anal Appl 209:140–146, 1997). We investigate the convergence properties of these operators, establishing necessary and sufficient conditions for uniform convergence and deriving quantitative estimates for the rate of convergence in terms of the Ditzian–Totik unified modulus of smoothness. Furthermore, we establish an inverse approximation theorem that characterizes the smoothness of the function based on the rate of convergence of the operators. We extend our analysis to the L p -norm setting, proving the convergence of the operators for functions in L p [ 0 , 1 ] , 1 p < and providing quantitative estimates for the rate of convergence in the L p -norm, utilizing the integral modulus of smoothness. Numerical simulations demonstrate the effectiveness of the proposed operators. We observe rapid convergence in practical examples, with significant error reduction as the number of basis functions ( n ) increases. These findings are supported by detailed numerical experiments and visual representations, showcasing the practical applicability of the operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信