{"title":"Experimental validation of adaptive grey wolf optimizer-based powertrain vibration control with backlash handling","authors":"Heisei Yonezawa , Ansei Yonezawa , Itsuro Kajiwara","doi":"10.1016/j.mechmachtheory.2024.105825","DOIUrl":"10.1016/j.mechmachtheory.2024.105825","url":null,"abstract":"<div><div>The controller optimization task is rarely spotlighted despite its importance for vehicle drivetrain mechanisms although many studies have been dedicated to developing vibration control strategies. Based on the adaptive grey wolf optimizer (AGWO), this research develops a fast-optimization scheme for a drivetrain oscillation control system that simultaneously addresses effects of nonlinear backlash. A drivetrain system model governed by a backlash nonlinearity is presented, and a baseline controller is derived for damping low-frequency drivetrain resonance based on the optimal <span><math><msub><mi>H</mi><mn>2</mn></msub></math></span> synthesis. The introduction of a time-dependent-switched Kalman filter realizes a solution for dealing with the nonlinear backlash issue, relying on straightforward controller-switching-based compensation for the backlash and contact modes. Optimal solutions for the control system parameters are efficiently obtained using AGWO. AGWO exhibits both global search capability and superior computational efficiency because of its systematic stopping criteria and adaptive exploration/exploitation parameter. This study improves the efficiency of optimizing active drivetrain vibration control by introducing the adaptive mechanism into the controller parameter tuning. Comparative experiments demonstrate that the AGWO-based scheme provides a sufficiently good controller with the fastest time.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105825"},"PeriodicalIF":4.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on mesh stiffness functions in three-dimensional spur and helical gear models. Definitions and numerical simulations","authors":"B. Guilbert, Ph Velex","doi":"10.1016/j.mechmachtheory.2024.105823","DOIUrl":"10.1016/j.mechmachtheory.2024.105823","url":null,"abstract":"<div><div>A definition of mesh stiffness as a scalar function connecting spur and helical three-dimensional pinions and gears is presented along with its conceptual limitations. Since it relies on global parameters namely, variations in torque and transmission errors, it can therefore be applied to the vast majority of the models found in the literature. In parallel, a multi-foundation (MF) model of mesh interface is introduced with the objective of being as accurate as three-dimensional finite element (FE) simulations for highly reduced computational costs. Numerous results on mesh stiffness and tooth contact conditions are presented for unmodified spur and helical gears. It is shown that the proposed mesh stiffness functions based on global parameters are sound and that the MF and FE results compare well, particularly when gear body deflections are limited. The contributions of off-line of action contacts, elastic couplings when several tooth pairs are loaded and axial deflections in helical gears are analysed. Finally, the notion of mesh stiffness function representative of the elasticity of a pinion-gear pair for static and dynamic conditions is examined.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105823"},"PeriodicalIF":4.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyong Wu , Qingping Liu , Jun Ding , Congzhe Wang , Haoyong Yu , Shaoping Bai
{"title":"Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads","authors":"Xiaoyong Wu , Qingping Liu , Jun Ding , Congzhe Wang , Haoyong Yu , Shaoping Bai","doi":"10.1016/j.mechmachtheory.2024.105829","DOIUrl":"10.1016/j.mechmachtheory.2024.105829","url":null,"abstract":"<div><div>The transmission angle is a traditional performance indicator in planar four-bar linkages, whereby force and motion are transmitted from the input link to the output link. However, for the calculation of traditional transmission angle, it is predefined that the input and output links are connected to the fixed link, i.e., the grounded link. This brings the problem of calculating the transmission angle for other cases, for example, the coupler link being the input link. Moreover, the traditional transmission angle cannot evaluate the influence of external loads on the transmission quality. In this work, we revisit this problem and redefine the transmission angle, which allows us to investigate the effect of different selections of the input and output links and external loads on the transmission performance. A case study of transmission angle analysis of a planar four-bar linkage is included to illustrate the application of the revised performance index. Moreover, three new transmission quality indices are introduced, upon which transmission performance optimization of a planar four-bar linkage is presented. Based on the redefined transmission angle and the proposed transmission quality indices, transmission quality analysis and optimal design of general four-bar linkages can be conducted to enhance their transmission performances.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105829"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing natural frequencies in compliant mechanisms through geometric scaling","authors":"Vivien Platl, Lena Zentner","doi":"10.1016/j.mechmachtheory.2024.105822","DOIUrl":"10.1016/j.mechmachtheory.2024.105822","url":null,"abstract":"<div><div>This work contributes to the dynamic analysis and optimization of compliant mechanisms in terms of their natural frequencies. The previously established analytical method based on Bernoulli beams and the transfer matrix method, which underlies the existing calculation tool <em>CaTEf</em>, is extended to enable the scaling of any specified geometric parameter or parameter set within a given mechanism to achieve a desired natural frequency. By introducing a scaling parameter, precise adjustments of selected geometric parameters are ensured while accounting for inherent dependencies. Minor discrepancies are revealed in parameter studies when comparing results obtained with our proposed analytical method to those from the Finite Element Method (FEM) regarding the resulting scaled values. Following validation, the analytical method is seamlessly integrated into <em>CaTEf</em> and verified against experimental data, demonstrating strong agreement. This work results in a highly efficient analytical method for optimizing compliant mechanisms in terms of their dynamic behavior, especially natural frequencies, while significantly reducing modeling and calculation time.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105822"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oriblock: The origami-blocks based on hinged dissection","authors":"Guanglu Jia , Bing Li , Jian S. Dai","doi":"10.1016/j.mechmachtheory.2024.105826","DOIUrl":"10.1016/j.mechmachtheory.2024.105826","url":null,"abstract":"<div><div>Traditional origami, a well-known art of paper-folding, does not account for material thickness. Subsequently, several thickness-accommodation techniques have been developed, considering the non-negligible thickness of materials, which enables the application of origami to a wide range of mechanisms. Although these techniques prevent self-intersections and preserve kinematics after accommodating panel thickness, they are limited by their reliance on initial zero-thickness origami patterns in two dimensions. To address this issue, this study proposes a novel technique, the volume-accommodation technique in three-dimensional space, which allocates non-coplanar origami creases based on solid geometry to allow a greater variety of shape-changing motions. Typical solid geometries, such as a pyramid and a prism, are selected as examples to demonstrate the design procedures. Closure equations of the obtained oriblock are used to analyze the kinematic properties. Additionally, Bennett and Myard Linkages are derived from oriblocks based on their kinematic equivalence to strengthen their connections. As a result, this new type of origami can offer a variety of mechanisms for designers and facilitate potential applications in origami-inspired metamaterials and robotics.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105826"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Fang , Shao-ke Wan , Jin-hua Zhang , Ke Yan , Jun Hong
{"title":"A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces","authors":"Bin Fang , Shao-ke Wan , Jin-hua Zhang , Ke Yan , Jun Hong","doi":"10.1016/j.mechmachtheory.2024.105820","DOIUrl":"10.1016/j.mechmachtheory.2024.105820","url":null,"abstract":"<div><div>In this paper, based on the multi-degree-of-freedom (M-DOF) finite element and 2-dimensional transient thermal network methods, a novel thermo-mechanical coupling model of the high-speed spindle-bearing system by comprehensively considering the radial coupling deformations of supporting ball bearings and rotor is proposed, and the effects of the temperature rise and thermal deformation on its dynamic characteristics are discussed. Then a non-contact electromagnetic loading device is designed to test the dynamic amplitude-frequency response of a hydraulic variable preload experimental spindle system. The studies show that, the results calculated by proposed thermo-mechanical coupling model are highly consistent with the experimental results of the spindles system, and the temperature rise and thermal deformations have an important influence on its mechanical behavior, and the linear resonant frequency of the high-speed spindle under the constant pressure preload mechanism continues to increase until the system reaches its thermal equilibrium state.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105820"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gengxiang Wang , Zepeng Niu , Fuan Cheng , Yongjun Pan
{"title":"Analysis of nonphysical attraction force and new coefficient of restitution based on a nonlinear viscoelastic contact model in cohesionless granular system","authors":"Gengxiang Wang , Zepeng Niu , Fuan Cheng , Yongjun Pan","doi":"10.1016/j.mechmachtheory.2024.105821","DOIUrl":"10.1016/j.mechmachtheory.2024.105821","url":null,"abstract":"<div><div>This investigation implements systematical research on the coefficient of restitution (CoR) and nonphysical attraction force. Firstly, a characteristic length is redefined based on energy conservation. On this basis, a new general CoR model is derived through characteristic length. Subsequently, a new constraint equation of the power exponents is proposed from the new CoR model. The new CoR model is validated by experimental data regardless of whether the initial impact velocity is very low or high speed. Secondly, we systematically analyze the real reason for the nonphysical attraction force in the viscous damping loop. The simulation shows the nonphysical attraction force cannot be removed from the viscous damping loop. The real reason for the nonphysical attraction force lies in the natural property of the viscous damping factor. Finally, to eliminate the effect of the attraction force on the motion status of colliding particles after impact, a balance coefficient is introduced to compensate for the deficiency of nonphysical attraction force and original damping factor. The simulation proves that the post-impact velocity of colliding particles can be precisely captured using a viscous contact force model with a balance coefficient.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105821"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Chen , Lifu Liu , Luna Zhou , Ran Cheng , Wei Wang , Ke Wu , Ruilin Li , Xin Li , Gang Zheng
{"title":"Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion","authors":"Rui Chen , Lifu Liu , Luna Zhou , Ran Cheng , Wei Wang , Ke Wu , Ruilin Li , Xin Li , Gang Zheng","doi":"10.1016/j.mechmachtheory.2024.105816","DOIUrl":"10.1016/j.mechmachtheory.2024.105816","url":null,"abstract":"<div><div>Compliant mechanisms (CMs) exhibit some excellent mechanical properties and provide numerous innovative solutions for many existing mechanical applications. Among them, planar compliant rotational joints have made substantial contributions to precision engineering. To achieve high-precision positioning with a compliant rotational joint, it is essential to study characteristics such as anti-buckling and constant stiffness. The remote center of motion (RCM) mechanism, with its compact structure and ease of precise control, is expected to enhance overall rigidity and reduce parasitic displacements. Here, we propose a planar anti-buckling compliant rotational joint with a RCM. Static modeling and model validation are conducted for different geometric configurations, including single and combined structures. A distributed configuration with bidirectional anti-buckling properties is selected for optimization. Using a global parameter optimization model, single-objective optimization studies are conducted for three distinct characteristics. Subsequently, a multi-objective optimization model for constant stiffness and high precision is established. Based on the optimization results, a compliant rotational joint with bidirectional anti-buckling, constant rotational stiffness, and high precision is designed. Finally, the effectiveness of the optimization method is validated through physical experiments.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105816"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of the objects' positioning process on the conveyor with the positioning rectilinear barrier and the system of driven oblique rollers","authors":"T. Piatkowski","doi":"10.1016/j.mechmachtheory.2024.105817","DOIUrl":"10.1016/j.mechmachtheory.2024.105817","url":null,"abstract":"<div><div>The paper deals with the positioning process modelling of the cuboidal objects along the conveyor edge by means of an oblique friction force field with a rectilinear barrier. The friction field is created by a system of driven oblique rollers. A modified nonlinear Kelvin model was used to describe the normal reaction forces at the contact points of the object with the conveyor and barrier. There were taken into account two 2D vector friction models: the LuGre and the Bengisu-Akay, representing the dynamic and static groups of friction models, respectively. The LuGre model has been modified to overcome the limitations of the classic model in terms of the invariability of the normal contact forces. The use of scaling of the stiffness coefficient (due to the normal contact force) allows the friction simulation while bodies collision, i.e. when the normal contact force shows rapid changes in value and the initial sliding velocity is non-zero. A method for determining the dynamic parameters of the LuGre model is proposed. The results of numerical and experimental research on the positioning process show acceptable compliance and validity of the adopted assumptions.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105817"},"PeriodicalIF":4.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an analytical model and method for analyzing deformation in planar load cells","authors":"Hannes Jahn , Thomas Fröhlich , Lena Zentner","doi":"10.1016/j.mechmachtheory.2024.105812","DOIUrl":"10.1016/j.mechmachtheory.2024.105812","url":null,"abstract":"<div><div>Due to their advantageous properties, compliant mechanisms are widely used in various technical fields. Strain-based deformation bodies, a particular type of these mechanisms, are often used in weighing technology. They are used in conjunction with strain gauges for force measurement, among other applications. Until now, such weighing mechanisms have been designed using finite element simulations or empirical studies, which are often time-consuming and costly. Therefore, this article presents an analytical calculation model based on the theory of large deformations of rod-like structures, which simplifies the calculation of such weighing mechanisms. Key elements in this calculation are the transversally symmetric hinges required for the description. Investigations show that, due to the geometry of these cells, tensile and compressive deformations are not negligible and must be included in the analytical model. The validity and accuracy of the analytical model are verified through parameter studies and show deviations of less than 6% compared to the FEM. Finally, the model is integrated into a graphical user interface to allow an easy application to analyze load cells.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105812"},"PeriodicalIF":4.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}