多保真谐波平衡法:一种非干扰的方法

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Hady Mohamed , Nils Brödling , Fabian Duddeck
{"title":"多保真谐波平衡法:一种非干扰的方法","authors":"Hady Mohamed ,&nbsp;Nils Brödling ,&nbsp;Fabian Duddeck","doi":"10.1016/j.mechmachtheory.2025.106251","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel non-intrusive hierarchical multi-fidelity harmonic balance method (HBM) framework for efficient uncertainty quantification (UQ) of nonlinear frequency response functions (FRFs) with application to gear transmission dynamics. The framework uniquely combines proper orthogonal decomposition (POD) to reduce the dimensionality of HBM-derived Fourier coefficients, enable efficient surrogate modeling in latent space, and retain access to both time- and frequency-domain responses. A key innovation is aligning low- and high-fidelity Fourier coefficient latent spaces via Procrustes analysis to improve the construction of a multi-fidelity surrogate using hierarchical Kriging with polynomial chaos Kriging (PCK) as the trend function. Further, computational efficiency in low-fidelity evaluations is achieved by integrating POD with linear regression for rapid compliance matrix estimation in loaded tooth contact analysis (LTCA). Numerical results demonstrate significant computational savings for uncertain FRF predictions of 5000 Monte Carlo (MC) samples. The proposed novelties represent the first application of hierarchical Kriging across aligned Fourier latent spaces and accelerated LTCA within a scalable framework for moderate-dimensional, vector-valued FRF uncertainty analysis, supporting broad applicability to nonlinear dynamical systems modeled with Frequency domain solvers.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"217 ","pages":"Article 106251"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-fidelity harmonic balance method: A non-intrusive approach\",\"authors\":\"Hady Mohamed ,&nbsp;Nils Brödling ,&nbsp;Fabian Duddeck\",\"doi\":\"10.1016/j.mechmachtheory.2025.106251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel non-intrusive hierarchical multi-fidelity harmonic balance method (HBM) framework for efficient uncertainty quantification (UQ) of nonlinear frequency response functions (FRFs) with application to gear transmission dynamics. The framework uniquely combines proper orthogonal decomposition (POD) to reduce the dimensionality of HBM-derived Fourier coefficients, enable efficient surrogate modeling in latent space, and retain access to both time- and frequency-domain responses. A key innovation is aligning low- and high-fidelity Fourier coefficient latent spaces via Procrustes analysis to improve the construction of a multi-fidelity surrogate using hierarchical Kriging with polynomial chaos Kriging (PCK) as the trend function. Further, computational efficiency in low-fidelity evaluations is achieved by integrating POD with linear regression for rapid compliance matrix estimation in loaded tooth contact analysis (LTCA). Numerical results demonstrate significant computational savings for uncertain FRF predictions of 5000 Monte Carlo (MC) samples. The proposed novelties represent the first application of hierarchical Kriging across aligned Fourier latent spaces and accelerated LTCA within a scalable framework for moderate-dimensional, vector-valued FRF uncertainty analysis, supporting broad applicability to nonlinear dynamical systems modeled with Frequency domain solvers.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"217 \",\"pages\":\"Article 106251\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25003404\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25003404","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的非侵入式分层多保真谐波平衡法框架,用于非线性频响函数的不确定性量化,并将其应用于齿轮传动动力学。该框架独特地结合了适当的正交分解(POD),以降低hbm衍生的傅立叶系数的维数,在潜在空间中实现有效的代理建模,并保留对时域和频域响应的访问。一个关键的创新是通过Procrustes分析将低保真和高保真傅里叶系数潜在空间对齐,以多项式混沌克里格(PCK)作为趋势函数,使用分层克里格来改进多保真代理的构建。此外,通过将POD与线性回归相结合,在加载齿接触分析(LTCA)中快速估计柔度矩阵,提高了低保真度评估的计算效率。数值结果表明,对于5000个蒙特卡罗(MC)样本的不确定频响预测,可以显著节省计算量。提出的新方法代表了分层克里格在排列傅立叶潜在空间中的首次应用,并在中等维度、向量值FRF不确定性分析的可扩展框架内加速LTCA,支持广泛适用于用频域求解器建模的非线性动力系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-fidelity harmonic balance method: A non-intrusive approach
This paper presents a novel non-intrusive hierarchical multi-fidelity harmonic balance method (HBM) framework for efficient uncertainty quantification (UQ) of nonlinear frequency response functions (FRFs) with application to gear transmission dynamics. The framework uniquely combines proper orthogonal decomposition (POD) to reduce the dimensionality of HBM-derived Fourier coefficients, enable efficient surrogate modeling in latent space, and retain access to both time- and frequency-domain responses. A key innovation is aligning low- and high-fidelity Fourier coefficient latent spaces via Procrustes analysis to improve the construction of a multi-fidelity surrogate using hierarchical Kriging with polynomial chaos Kriging (PCK) as the trend function. Further, computational efficiency in low-fidelity evaluations is achieved by integrating POD with linear regression for rapid compliance matrix estimation in loaded tooth contact analysis (LTCA). Numerical results demonstrate significant computational savings for uncertain FRF predictions of 5000 Monte Carlo (MC) samples. The proposed novelties represent the first application of hierarchical Kriging across aligned Fourier latent spaces and accelerated LTCA within a scalable framework for moderate-dimensional, vector-valued FRF uncertainty analysis, supporting broad applicability to nonlinear dynamical systems modeled with Frequency domain solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信