约束多体系统的σ-修正李群广义-α方法

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Stefan Holzinger , Martin Arnold , Johannes Gerstmayr
{"title":"约束多体系统的σ-修正李群广义-α方法","authors":"Stefan Holzinger ,&nbsp;Martin Arnold ,&nbsp;Johannes Gerstmayr","doi":"10.1016/j.mechmachtheory.2025.106236","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and accurate time integration methods are crucial for real-time simulation, optimization and control of constrained multibody systems. This paper presents new Lie group generalized-<span><math><mi>α</mi></math></span> methods that improve accuracy for multibody systems with large rotations. The proposed methods extend the widely used <em>geom1</em> scheme by Brüls and Cardona by introducing a <span><math><mi>σ</mi></math></span>-modification that allows to systematically eliminate a Lie group-specific part of the leading error term without compromising second-order accuracy or zero stability. While optimal accuracy is achieved for a specific choice of <span><math><mi>σ</mi></math></span>, the special case <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn></mrow></math></span> offers notable algorithmic simplicity and minimal computational overhead. The original <em>geom1</em> scheme is recovered by setting <span><math><mrow><mi>σ</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Several numerical benchmarks demonstrate the potential of the proposed Lie group integrators compared to both the original <em>geom1</em> method and conventional formulations based on Euler parameters or Cardan/Tait-Bryan angles.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"217 ","pages":"Article 106236"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"σ-modified Lie group generalized-α methods for constrained multibody systems\",\"authors\":\"Stefan Holzinger ,&nbsp;Martin Arnold ,&nbsp;Johannes Gerstmayr\",\"doi\":\"10.1016/j.mechmachtheory.2025.106236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient and accurate time integration methods are crucial for real-time simulation, optimization and control of constrained multibody systems. This paper presents new Lie group generalized-<span><math><mi>α</mi></math></span> methods that improve accuracy for multibody systems with large rotations. The proposed methods extend the widely used <em>geom1</em> scheme by Brüls and Cardona by introducing a <span><math><mi>σ</mi></math></span>-modification that allows to systematically eliminate a Lie group-specific part of the leading error term without compromising second-order accuracy or zero stability. While optimal accuracy is achieved for a specific choice of <span><math><mi>σ</mi></math></span>, the special case <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn></mrow></math></span> offers notable algorithmic simplicity and minimal computational overhead. The original <em>geom1</em> scheme is recovered by setting <span><math><mrow><mi>σ</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Several numerical benchmarks demonstrate the potential of the proposed Lie group integrators compared to both the original <em>geom1</em> method and conventional formulations based on Euler parameters or Cardan/Tait-Bryan angles.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"217 \",\"pages\":\"Article 106236\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25003258\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25003258","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效、精确的时间积分方法对约束多体系统的实时仿真、优化和控制至关重要。本文提出了新的李群广义-α方法,提高了大旋转多体系统的精度。所提出的方法扩展了br ls和Cardona广泛使用的geom1方案,通过引入σ-修正,可以系统地消除主要误差项中李群特定的部分,而不会影响二阶精度或零稳定性。虽然对于σ的特定选择可以实现最佳精度,但σ=1的特殊情况提供了显著的算法简单性和最小的计算开销。通过设置σ=0恢复原始的geom1方案。与原始的geom1方法和基于欧拉参数或Cardan/Tait-Bryan角度的传统公式相比,几个数值基准证明了所提出的李群积分器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
σ-modified Lie group generalized-α methods for constrained multibody systems
Efficient and accurate time integration methods are crucial for real-time simulation, optimization and control of constrained multibody systems. This paper presents new Lie group generalized-α methods that improve accuracy for multibody systems with large rotations. The proposed methods extend the widely used geom1 scheme by Brüls and Cardona by introducing a σ-modification that allows to systematically eliminate a Lie group-specific part of the leading error term without compromising second-order accuracy or zero stability. While optimal accuracy is achieved for a specific choice of σ, the special case σ=1 offers notable algorithmic simplicity and minimal computational overhead. The original geom1 scheme is recovered by setting σ=0. Several numerical benchmarks demonstrate the potential of the proposed Lie group integrators compared to both the original geom1 method and conventional formulations based on Euler parameters or Cardan/Tait-Bryan angles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信