Microbiology-Sgm最新文献

筛选
英文 中文
Exploiting cooperative pathogen behaviour for enhanced antibiotic potency: A Trojan horse approach. 利用病原体的合作行为提高抗生素效力:特洛伊木马方法
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-04-01 DOI: 10.1099/mic.0.001454
Alper Mutlu, Emily J Vanderpool, Kendra P Rumbaugh, Stephen P Diggle, Ashleigh S Griffin
{"title":"Exploiting cooperative pathogen behaviour for enhanced antibiotic potency: A Trojan horse approach.","authors":"Alper Mutlu, Emily J Vanderpool, Kendra P Rumbaugh, Stephen P Diggle, Ashleigh S Griffin","doi":"10.1099/mic.0.001454","DOIUrl":"10.1099/mic.0.001454","url":null,"abstract":"<p><p>Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence <i>in vitro</i> and <i>in vivo</i>. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed <i>Pseudomonas aeruginosa</i> quorum sensing cheats to drive antibiotic sensitivity into both <i>in vitro</i> and <i>in vivo</i> resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain background of Candida albicans interacts with SIR2 to alter phenotypic switching. 白色念珠菌的菌株背景与 SIR2 相互作用,从而改变表型转换。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001444
Andrew L Woodruff, Judith Berman, Matthew Anderson
{"title":"Strain background of <i>Candida albicans</i> interacts with <i>SIR2</i> to alter phenotypic switching.","authors":"Andrew L Woodruff, Judith Berman, Matthew Anderson","doi":"10.1099/mic.0.001444","DOIUrl":"10.1099/mic.0.001444","url":null,"abstract":"<p><p>The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in <i>Candida albicans,</i> a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin <i>SIR2</i> in <i>C. albicans</i> phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. <i>SIR2</i> mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of <i>SIR2</i> in other SC5314-derived backgrounds, including newly constructed BWP17 <i>sir2</i>Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 <i>sir2</i>Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with <i>SIR2</i> to increase phenotypic switching in this BWP17 <i>sir2</i>Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived <i>sir2</i>Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial biofilms on macroalgae harbour diverse integron gene cassettes. 大型藻类上的微生物生物膜含有多种整合子基因盒。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001446
Stefano Freddi, Vaheesan Rajabal, Sasha G Tetu, Michael R Gillings, Anahit Penesyan
{"title":"Microbial biofilms on macroalgae harbour diverse integron gene cassettes.","authors":"Stefano Freddi, Vaheesan Rajabal, Sasha G Tetu, Michael R Gillings, Anahit Penesyan","doi":"10.1099/mic.0.001446","DOIUrl":"10.1099/mic.0.001446","url":null,"abstract":"<p><p>Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae <i>Ulva australis</i> and <i>Sargassum linearifolium</i>. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on <i>Ulva</i> and <i>Sargassum</i> surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria. 来自粘膜相关细菌的脱水戊二酸转运体的特征。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001448
Yunhan Wu, Andrew Bell, Gavin H Thomas, David N Bolam, Frank Sargent, Nathalie Juge, Tracy Palmer, Emmanuele Severi
{"title":"Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria.","authors":"Yunhan Wu, Andrew Bell, Gavin H Thomas, David N Bolam, Frank Sargent, Nathalie Juge, Tracy Palmer, Emmanuele Severi","doi":"10.1099/mic.0.001448","DOIUrl":"10.1099/mic.0.001448","url":null,"abstract":"<p><p>Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of <i>Escherichia coli</i> to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic modification of Candida maltosa, a non-pathogenic CTG species, reveals EFG1 function. 对非致病性 CTG 菌种麦芽念珠菌的基因改造揭示了 EFG1 的功能。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001447
Marco Chávez-Tinoco, Luis F García-Ortega, Eugenio Mancera
{"title":"Genetic modification of <i>Candida maltosa</i>, a non-pathogenic CTG species, reveals <i>EFG1</i> function.","authors":"Marco Chávez-Tinoco, Luis F García-Ortega, Eugenio Mancera","doi":"10.1099/mic.0.001447","DOIUrl":"10.1099/mic.0.001447","url":null,"abstract":"<p><p><i>Candida maltosa</i> is closely related to important pathogenic <i>Candida</i> species, especially <i>C. tropicalis</i> and <i>C. albicans,</i> but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of <i>Candida</i> species. Here, we generated a cohesive assembly of the <i>C. maltosa</i> genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with <i>C. albicans</i> and <i>C. tropicalis</i> revealed a substantial reduction in the total number of genes in <i>C. maltosa</i>. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in <i>C. maltosa</i>. To be able to edit the genome of <i>C. maltosa</i> we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic <i>Candida</i> species. As a proof of concept, we generated gene knockouts of <i>EFG1,</i> a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in <i>C. albicans</i> and <i>C. tropicalis</i>. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in <i>C. maltosa</i>, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using <i>C. maltosa</i> for comparative and evolutionary studies at a molecular level.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-colour fluorogenic tag and its application in Candida albicans. 多色荧光标记及其在白色念珠菌中的应用。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001451
Jonas Devos, Patrick Van Dijck, Wouter Van Genechten
{"title":"A multi-colour fluorogenic tag and its application in <i>Candida albicans</i>.","authors":"Jonas Devos, Patrick Van Dijck, Wouter Van Genechten","doi":"10.1099/mic.0.001451","DOIUrl":"10.1099/mic.0.001451","url":null,"abstract":"<p><p>Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen <i>Candida albicans,</i> but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in <i>C. albicans</i>.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Primer: Lipopolysaccharide - a remarkable component of the Gram-negative bacterial surface. 微生物引子:脂多糖--革兰氏阴性细菌表面的一种重要成分。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001439
Leah M VanOtterloo, M Stephen Trent
{"title":"Microbial Primer: Lipopolysaccharide - a remarkable component of the Gram-negative bacterial surface.","authors":"Leah M VanOtterloo, M Stephen Trent","doi":"10.1099/mic.0.001439","DOIUrl":"10.1099/mic.0.001439","url":null,"abstract":"<p><p>Lipopolysaccharide (LPS) is a fundamental tripartite glycolipid found on the surface of nearly all Gram-negative bacteria. It acts as a protective shield for the bacterial cell and is a potent agonist of the innate immune system. This primer serves to introduce the basic properties of LPS, its function in bacterial physiology and pathogenicity, and its use as a therapeutic target.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT. 实验演化出的金黄色葡萄球菌通过获得氨基酸转运体 GltT 的突变,在铜绿假单胞菌存在的情况下提高了存活率。
IF 2.6 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001445
Ashley M Alexander, Justin M Luu, Vishnu Raghuram, Giulia Bottacin, Simon van Vliet, Timothy D Read, Joanna B Goldberg
{"title":"Experimentally evolved <i>Staphylococcus aureus</i> shows increased survival in the presence of <i>Pseudomonas aeruginosa</i> by acquiring mutations in the amino acid transporter, GltT.","authors":"Ashley M Alexander, Justin M Luu, Vishnu Raghuram, Giulia Bottacin, Simon van Vliet, Timothy D Read, Joanna B Goldberg","doi":"10.1099/mic.0.001445","DOIUrl":"10.1099/mic.0.001445","url":null,"abstract":"<p><p>When cultured together under standard laboratory conditions <i>Pseudomonas aeruginosa</i> has been shown to be an effective inhibitor of <i>Staphylococcus aureus</i>. However, <i>P. aeruginosa</i> and <i>S. aureus</i> are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that <i>S. aureus</i> isolates from CF infections are able to persist in the presence of <i>P. aeruginosa</i> strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow <i>S. aureus</i> to survive in the presence of <i>P. aeruginosa</i>. Using <i>S. aureus</i> USA300 JE2 as our ancestral strain, populations of <i>S. aureus</i> were repeatedly cocultured with fresh <i>P. aeruginosa</i> PAO1. After eight coculture periods, <i>S. aureus</i> populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved <i>S. aureus</i> aspartate transporter, <i>gltT</i>, that were unique to evolved <i>P. aeruginosa</i>-tolerant isolates. Subsequent phenotypic testing demonstrated that <i>gltT</i> mutants have reduced uptake of glutamate and outcompeted wild-type <i>S. aureus</i> when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of <i>P. aeruginosa</i> exerts selective pressure on <i>S. aureus</i> to alter its uptake and metabolism of key amino acids when the two are cultured together.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene expression reprogramming of Pseudomonas alloputida in response to arginine through the transcriptional regulator ArgR. 通过转录调控因子 ArgR 对全口假单胞菌响应精氨酸的基因表达进行重编程。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-03-01 DOI: 10.1099/mic.0.001449
María Antonia Molina-Henares, María Isabel Ramos-González, Serena Rinaldo, Manuel Espinosa-Urgel
{"title":"Gene expression reprogramming of <i>Pseudomonas alloputida</i> in response to arginine through the transcriptional regulator ArgR.","authors":"María Antonia Molina-Henares, María Isabel Ramos-González, Serena Rinaldo, Manuel Espinosa-Urgel","doi":"10.1099/mic.0.001449","DOIUrl":"10.1099/mic.0.001449","url":null,"abstract":"<p><p>Different bacteria change their life styles in response to specific amino acids. In <i>Pseudomonas putida</i> (now <i>alloputida</i>) KT2440, arginine acts both as an environmental and a metabolic indicator that modulates the turnover of the intracellular second messenger c-di-GMP, and expression of biofilm-related genes. The transcriptional regulator ArgR, belonging to the AraC/XylS family, is key for the physiological reprogramming in response to arginine, as it controls transport and metabolism of the amino acid. To further expand our knowledge on the roles of ArgR, a global transcriptomic analysis of KT2440 and a null <i>argR</i> mutant growing in the presence of arginine was carried out. Results indicate that this transcriptional regulator influences a variety of cellular functions beyond arginine metabolism and transport, thus widening its regulatory role. ArgR acts as positive or negative modulator of the expression of several metabolic routes and transport systems, respiratory chain and stress response elements, as well as biofilm-related functions. The partial overlap between the ArgR regulon and those corresponding to the global regulators RoxR and ANR is also discussed.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shigella sonnei utilises colicins during inter-bacterial competition. 子内志贺菌在细菌间竞争中利用了大肠杆菌素。
IF 2.8 4区 生物学
Microbiology-Sgm Pub Date : 2024-02-01 DOI: 10.1099/mic.0.001434
P B Leung, X M Matanza, B Roche, K P Ha, H C Cheung, S Appleyard, T Collins, O Flanagan, B S Marteyn, A Clements
{"title":"<i>Shigella sonnei</i> utilises colicins during inter-bacterial competition.","authors":"P B Leung, X M Matanza, B Roche, K P Ha, H C Cheung, S Appleyard, T Collins, O Flanagan, B S Marteyn, A Clements","doi":"10.1099/mic.0.001434","DOIUrl":"10.1099/mic.0.001434","url":null,"abstract":"<p><p>The mammalian colon is one of the most densely populated habitats currently recognised, with 10<sup>11</sup>-10<sup>13</sup> commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are <i>Shigella</i> species which cause approximately 125 million infections annually, of which over 90 % are caused by <i>Shigella flexneri</i> and <i>Shigella sonnei. Shigella sonnei</i> was previously reported to use a Type VI Secretion System (T6SS) to outcompete <i>E. coli</i> and <i>S. flexneri</i> in <i>in vitro</i> and <i>in vivo</i> experiments. <i>S. sonnei</i> strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of <i>S. sonnei</i>. We reveal that whilst the T6SS operon is present in <i>S. sonnei,</i> there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our <i>in vitro</i> assays was due to colicin activity. We show that <i>S. sonnei</i> no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from <i>S. sonnei</i> abrogated anti-bacterial activity of <i>S. sonnei</i>. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by <i>S. sonnei</i> within the gastrointestinal environment.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信