Trung Anh Trieu, Lam Minh Duong, Phuong Anh Nguyen, Thuoc Van Doan, Hung Phuc Nguyen
{"title":"Myo5B plays a significant role in the hyphal growth and virulence of the human pathogenic fungus <i>Mucor lusitanicus</i>.","authors":"Trung Anh Trieu, Lam Minh Duong, Phuong Anh Nguyen, Thuoc Van Doan, Hung Phuc Nguyen","doi":"10.1099/mic.0.001482","DOIUrl":null,"url":null,"abstract":"<p><p>Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in <i>Mucor lusitanicus</i> was explored by generating silencing phenotypes and null mutants corresponding to the <i>myo5B</i> gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The <i>myo5BΔ</i> null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. <i>In vivo</i> virulence assays conducted in the <i>Galleria mellonella</i> invertebrate model revealed that the <i>myo5BΔ</i> mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of <i>M. lusitanicus</i>. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in Mucor lusitanicus was explored by generating silencing phenotypes and null mutants corresponding to the myo5B gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The myo5BΔ null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. In vivo virulence assays conducted in the Galleria mellonella invertebrate model revealed that the myo5BΔ mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of M. lusitanicus. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.