{"title":"Physiological and pathological aspects of epididymal sperm maturation","authors":"","doi":"10.1016/j.mam.2024.101321","DOIUrl":"10.1016/j.mam.2024.101321","url":null,"abstract":"<div><div>In mammals, sperm that leave the testes are nonfunctional and require a complex post-testicular maturation process to acquire their ability to recognize and fertilize the egg. The crucial maturation changes that provide sperm their fertilizing capability occur while passing through the epididymis. Due to the widespread use of assisted reproductive technologies to address male infertility, there has been a significant decrease in research focusing on the mechanisms underlying the maturation process over the past decades. Considering that up to 40% of male infertility is idiopathic and could be reflecting sperm maturation defects, the study of post-testicular sperm maturation will clearly contribute to a better understanding of the causes of male infertility and to the development of both new approaches to maturing sperm <em>in vitro</em> and safer male contraceptive methods. Based on this, the present review focuses on the physiopathology of the epididymis as well as on current approaches under investigation to improve research in sperm maturation and as potential therapeutic options for male infertility.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in human In vitro spermatogenesis: A review","authors":"","doi":"10.1016/j.mam.2024.101320","DOIUrl":"10.1016/j.mam.2024.101320","url":null,"abstract":"<div><div>Recent advances surrounding in vitro spermatogenesis (IVS) have shown potential in creating a new paradigm of regenerative medicine in the future of fertility treatments for males experiencing non-obstructive azoospermia (NOA). Male infertility is a common condition affecting approximately 15% of couples, with azoospermia being present in 15% of infertile males (Cocuzza et al., 2013; Esteves et al., 2011a). Treatment for patients with NOA has primarily been limited to surgical sperm retrieval combined with in vitro fertilization intracytoplasmic sperm injection (IVF-ICSI); however, sperm retrieval is successful in only half of these patients, and live birth rates typically range between 10 and 25% (Aljubran et al., 2022). Therefore, a significant need exists for regenerative therapies in this patient population.</div><div>IVS has been considered as a model for further understanding the molecular and cellular processes of spermatogenesis and as a potential regenerative therapeutic approach. While 2D cell cultures using human testicular cells have been attempted in previous research, lack of proper spatial arrangement limits germ cell differentiation and maturation, posing challenges for clinical application. Recent research suggests that 3D technology may have advantages for IVS due to mimicry of the native cytoarchitecture of human testicular tissue along with cell-cell communication directly or indirectly. 3D organotypic cultures, scaffolds, organoids, microfluidics, testis-on-a-chip, and bioprinting techniques have all shown potential to contribute to the technology of regenerative treatment strategies, including in vitro fertilization (IVF).</div><div>Although promising, further work is needed to develop technology for successful, replicable, and safe IVS for humans. The intersection between tissue engineering, molecular biology, and reproductive medicine in IVS development allows for multidisciplinary involvement, where challenges can be overcome to realize regenerative therapies as a viable option.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets","authors":"","doi":"10.1016/j.mam.2024.101319","DOIUrl":"10.1016/j.mam.2024.101319","url":null,"abstract":"<div><div>Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impacts of cancer therapy on male fertility: Past and present","authors":"","doi":"10.1016/j.mam.2024.101308","DOIUrl":"10.1016/j.mam.2024.101308","url":null,"abstract":"<div><p>Over the past two decades, advances in cancer therapy have significantly improved survival rates, particularly in childhood cancers. Still, many treatments pose a substantial risk for diminishing future fertility potential due to the gonadotoxic nature of many cancer regimens, justifying fertility preservation programs for both childhood and adult cancer patients. To assure a balance between offering fertility preservation and actual chance of infertility post-treatment, guidelines are in place. However, assessing the actual risk of infertility after treatment remains challenging, given the multi-faceted approach of many cancer treatment plans, which are continuously evolving. This review discusses the evolution of cancer therapy over the past 20 years and attempts to assess their impact on fertility after treatment. Overall, cancer regimens have shifted from broadly killing fast dividing cells to more targeting therapies, reducing collateral damage in general. Although progress has been made to reduce overall toxicity, unfortunately this does not automatically translate to reduced gonadotoxicity. Therefore, current fertility preservation programs continue to be an important part of cancer care.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098299724000670/pdfft?md5=8f19f2533a69786ae7ab55463531c34d&pid=1-s2.0-S0098299724000670-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunomodulation: A new approach to cancer cachexia, potentially suitable for aging","authors":"","doi":"10.1016/j.mam.2024.101318","DOIUrl":"10.1016/j.mam.2024.101318","url":null,"abstract":"<div><p>Cancer cachexia is the prototypical example of comorbidity, occurring in most of cancer patients. It is a direct consequence of tumor growth and of the associated inflammatory/immune response. Cachexia can be exacerbated by anti-cancer therapies, frequently resulting in dose limitation and/or treatment delay or discontinuation. The pathogenesis of cancer cachexia is still unclear and includes nutritional, metabolic, hormonal and immunological components.</p><p>Tumor ability to shape the immune response to its own advantage is now well accepted, while the possibility that such an altered immune response could play a role in the onset of cachexia is still an undefined issue. Indeed, most of the immune-related research on cachexia mainly focused on pro-inflammatory mediators, almost totally disregarding the interactions among immune cells and the homeostasis of peripheral tissues. The present review provides an overview of the immune system dysregulations occurring in cancer cachexia, focusing on the possibility that immunomodulating strategies, mainly developed to stimulate the anti-cancer immune response, could be useful to counteract cachexia as well.</p><p>Cancer and cachexia are frequent comorbidities of aging. Along this line, cancer- and aging-associated muscle wasting likely coexist in the same patients. Since both conditions share some of the underlying mechanisms, the potential effectiveness of immunomodulation on sarcopenia of aging is discussed.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098299724000773/pdfft?md5=8d6de41398a219ac4fb6b6a41a8067fc&pid=1-s2.0-S0098299724000773-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into Women's health: Exploring the vaginal microbiome, quorum sensing dynamics, and therapeutic potential of quorum sensing quenchers","authors":"","doi":"10.1016/j.mam.2024.101304","DOIUrl":"10.1016/j.mam.2024.101304","url":null,"abstract":"<div><p>The vaginal microbiome is an important aspect of women's health that changes dynamically with various stages of the woman's life. Just like the gut microbiome, the vaginal microbiome can also be affected by pathologies that dramatically change the typical composition of native vaginal microorganisms. However, the mechanism as to how both vaginal endemic and gut endemic opportunistic microbes can express pathogenicity in vaginal polymicrobial biofilms is poorly understood. Quorum sensing is the cellular density-dependent bacterial and fungal communication process in which chemical signaling molecules, known as autoinducers, activate expression for genes responsible for virulence and pathogenicity, such as biofilm formation and virulence factor production. Quorum sensing inhibition, or quorum quenching, has been explored as a potential therapeutic route for both bacterial and fungal infections. By applying these quorum quenchers, one can reduce biofilm formation of opportunistic vaginal microbes and combine them with antibiotics for a synergistic effect. This review aims to display the relationship between the vaginal and gut microbiome, the role of quorum sensing in polymicrobial biofilm formation which cause pathology in the vaginal microbiome, and how quorum quenchers can be utilized to attenuate the severity of bacterial and fungal infections.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms","authors":"","doi":"10.1016/j.mam.2024.101307","DOIUrl":"10.1016/j.mam.2024.101307","url":null,"abstract":"<div><p>This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis","authors":"","doi":"10.1016/j.mam.2024.101306","DOIUrl":"10.1016/j.mam.2024.101306","url":null,"abstract":"<div><p>Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4<sup>+</sup> T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098299724000657/pdfft?md5=a8fe469b309b5f4b85a33cab9291835f&pid=1-s2.0-S0098299724000657-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hepatitis C virus chronicity and oncogenic potential: Vaccine development progress","authors":"","doi":"10.1016/j.mam.2024.101305","DOIUrl":"10.1016/j.mam.2024.101305","url":null,"abstract":"<div><p>Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics","authors":"","doi":"10.1016/j.mam.2024.101302","DOIUrl":"10.1016/j.mam.2024.101302","url":null,"abstract":"<div><p>Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009829972400061X/pdfft?md5=73ba7a20be41091963375739f9ec2675&pid=1-s2.0-S009829972400061X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}