蛋白质和RNA伴侣

IF 10.3 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bikash R. Sahoo, James CA. Bardwell
{"title":"蛋白质和RNA伴侣","authors":"Bikash R. Sahoo,&nbsp;James CA. Bardwell","doi":"10.1016/j.mam.2025.101384","DOIUrl":null,"url":null,"abstract":"<div><div>Cells preserve macromolecular homeostasis by utilizing molecular chaperones that prevent aggregation or promote correct folding of protein and RNA. Here we discuss non-traditional proteinaceous chaperones like RNA-binding chaperones that work by modulating RNA structure, preventing aberrant interactions, and regulating intracellular granule dynamics. We also discuss the chaperone functions of other macromolecules such as nucleic acids, and in particular G-quadruplexes, which are very effective at preventing protein aggregation and accelerating protein folding. These chaperones are particularly important in G-quadruplex linked amyloid aggregation and repeat-expansion diseases such as Parkinson's disease and amyotrophic lateral sclerosis, where RNA aggregation and misfolded protein accumulation co-occur. By comparing protein and non-protein chaperone systems, we highlight the principles that underlie chaperone action across molecular classes.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"104 ","pages":"Article 101384"},"PeriodicalIF":10.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein and RNA chaperones\",\"authors\":\"Bikash R. Sahoo,&nbsp;James CA. Bardwell\",\"doi\":\"10.1016/j.mam.2025.101384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cells preserve macromolecular homeostasis by utilizing molecular chaperones that prevent aggregation or promote correct folding of protein and RNA. Here we discuss non-traditional proteinaceous chaperones like RNA-binding chaperones that work by modulating RNA structure, preventing aberrant interactions, and regulating intracellular granule dynamics. We also discuss the chaperone functions of other macromolecules such as nucleic acids, and in particular G-quadruplexes, which are very effective at preventing protein aggregation and accelerating protein folding. These chaperones are particularly important in G-quadruplex linked amyloid aggregation and repeat-expansion diseases such as Parkinson's disease and amyotrophic lateral sclerosis, where RNA aggregation and misfolded protein accumulation co-occur. By comparing protein and non-protein chaperone systems, we highlight the principles that underlie chaperone action across molecular classes.</div></div>\",\"PeriodicalId\":49798,\"journal\":{\"name\":\"Molecular Aspects of Medicine\",\"volume\":\"104 \",\"pages\":\"Article 101384\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Aspects of Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098299725000482\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Aspects of Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098299725000482","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞通过利用分子伴侣来防止蛋白质和RNA的聚集或促进正确折叠,从而保持大分子的稳态。在这里,我们讨论非传统的蛋白质伴侣,如RNA结合伴侣,通过调节RNA结构,防止异常相互作用和调节细胞内颗粒动力学起作用。我们还讨论了其他大分子的伴侣功能,如核酸,特别是g -四联体,它在防止蛋白质聚集和加速蛋白质折叠方面非常有效。这些伴侣蛋白在g -四重体相关淀粉样蛋白聚集和重复扩张疾病(如帕金森病和肌萎缩侧索硬化症)中尤为重要,在这些疾病中,RNA聚集和错误折叠的蛋白质积累共同发生。通过比较蛋白质和非蛋白质伴侣系统,我们强调了在分子类中伴侣作用的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein and RNA chaperones
Cells preserve macromolecular homeostasis by utilizing molecular chaperones that prevent aggregation or promote correct folding of protein and RNA. Here we discuss non-traditional proteinaceous chaperones like RNA-binding chaperones that work by modulating RNA structure, preventing aberrant interactions, and regulating intracellular granule dynamics. We also discuss the chaperone functions of other macromolecules such as nucleic acids, and in particular G-quadruplexes, which are very effective at preventing protein aggregation and accelerating protein folding. These chaperones are particularly important in G-quadruplex linked amyloid aggregation and repeat-expansion diseases such as Parkinson's disease and amyotrophic lateral sclerosis, where RNA aggregation and misfolded protein accumulation co-occur. By comparing protein and non-protein chaperone systems, we highlight the principles that underlie chaperone action across molecular classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Aspects of Medicine
Molecular Aspects of Medicine 医学-生化与分子生物学
CiteScore
18.20
自引率
0.00%
发文量
85
审稿时长
55 days
期刊介绍: Molecular Aspects of Medicine is a review journal that serves as an official publication of the International Union of Biochemistry and Molecular Biology. It caters to physicians and biomedical scientists and aims to bridge the gap between these two fields. The journal encourages practicing clinical scientists to contribute by providing extended reviews on the molecular aspects of a specific medical field. These articles are written in a way that appeals to both doctors who may struggle with basic science and basic scientists who may have limited awareness of clinical practice issues. The journal covers a wide range of medical topics to showcase the molecular insights gained from basic science and highlight the challenging problems that medicine presents to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信