P. Chandrasekharan, Renesmee Kuo, K. B. Fung, Chinmoy Saayujya, Jacob Bryan, Mariam Yousuf, B. Fellows, Caylin Colson, Q. Huynh, Owen N. Doyle, Allison Hartley, Khadija Yousuf, P. Goodwill, S. Conolly
{"title":"Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis","authors":"P. Chandrasekharan, Renesmee Kuo, K. B. Fung, Chinmoy Saayujya, Jacob Bryan, Mariam Yousuf, B. Fellows, Caylin Colson, Q. Huynh, Owen N. Doyle, Allison Hartley, Khadija Yousuf, P. Goodwill, S. Conolly","doi":"10.1155/2023/4131117","DOIUrl":"https://doi.org/10.1155/2023/4131117","url":null,"abstract":"Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":"1 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42018276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development and Evaluation of a Novel Radiotracer 125I-rIL-27 to Monitor Allotransplant Rejection by Specifically Targeting IL-27Rα","authors":"Shanshan Zhao, Qian Liu, F. Gao, G. Hou","doi":"10.1155/2023/4200142","DOIUrl":"https://doi.org/10.1155/2023/4200142","url":null,"abstract":"Noninvasive monitoring of allograft rejection is beneficial for the prognosis of patients with organ transplantation. Recently, IL-27/IL-27Rα was proved in close relation with inflammatory diseases, and 125I-anti-IL-27Rα mAb our group developed demonstrated high accumulation in the rejection of the allograft. However, antibody imaging has limitations in the imaging background due to its large molecular weight. Therefore, we developed a novel radiotracer (iodine-125-labeled recombinant IL-27) to evaluate the advantage in the targeting and imaging of allograft rejection. In vitro specific binding of 125I-rIL-27 was determined by saturation and competitive assay. Blood clearance, biodistribution, phosphor autoradioimaging, and IL-27Rα expression were studied on day 10 after transplantation (top period of allorejection). Our results indicated that 125I-rIL-27 could bind with IL-27Rα specifically and selectively in vitro. The blood clearance assay demonstrated fast blood clearance with 13.20 μl/h of 125I-rIL-27 staying in the blood after 24 h. The whole-body phosphor autoradiography and biodistribution assay indicated a higher specific uptake of 125I-rIL-27 and a clear radioimage in allograft than in syngraft at 24 h, while a similar result was obtained at 48 h in the group of 125I-anti-IL-27Rα mAb injection. Meanwhile, a higher expression of IL-27Rα was found in the allograft by Western blot. The accumulation of radioactivity of 125I-rIL-27 was highly correlated with the expression of IL-27Rα in the allograft. In conclusion, 125I-rIL-27 could be a promising probe for acutely monitoring allograft rejection with high specific binding towards IL-27Rα on allograft and low imaging background.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42519243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"13-cis-Retinoic Acid Affects Brain Perfusion and Function: In Vivo Study","authors":"Fatma J Al-Saeedi, P. Rajendran","doi":"10.1155/2023/7855924","DOIUrl":"https://doi.org/10.1155/2023/7855924","url":null,"abstract":"Purpose. Study the effects of 13-cis-retinoic acid (13-RA), a synthetic analogue of a vitamin A used for the treatment of severe acne, on the blood flow in the rat brain using technetium-99m hexamethyl propylene amine oxime (99mTc-HMPAO) imaging. Methods. A total of 30 adult male Wistar rats were divided into the control (C), low-dose (L), and high-dose (H) groups. The L and H rats were exposed subcutaneously to 0.3 and 0.5 mg, respectively, of 13-RA per kg of body weight for seven days. Brain blood flow imaging was performed using a gamma camera. Then, a region of interest (ROI) around the brain (target, T), a whole-body region (WB), and a background region (BG) was selected and delimited. The net 99mTc-HMPAO brain counts were calculated as the net target counts, \u0000 \u0000 NTC\u0000 =\u0000 \u0000 \u0000 T\u0000 −\u0000 BG\u0000 \u0000 \u0000 /\u0000 \u0000 \u0000 WB\u0000 −\u0000 BG\u0000 \u0000 \u0000 \u0000 in all groups. At the end of the 99mTc-HMPAO brain blood flow imaging, the brain, heart, kidney, lung, and liver were rapidly removed, and their uptake was determined. Brain histopathological analysis was performed using hematoxylin and eosin stains. In addition, the plasma fatty acids were studied using gas chromatography/mass spectrometry. Results. There were highly significant differences between L and H in comparison to C and across the groups. The 99mTc-HMPAO radioactivity in the brain showed increased uptake in a dose-dependent manner. There were also significant changes in the brain tissues and decreased free fatty acids among the groups compared to C. Conclusion. 13-RA increases 99mTcHMPAO brain perfusion, uptake, and function and reduces fatty acids.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45558737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Jagoda, F. Basuli, C. Olkowski, Ido D. Weiss, Tim E. Phelps, Karen J. Wong, Anita T. Ton, Kelly C. Lane, S. Adler, D. Butcher, E. Edmondson, S. Langermann, P. Choyke
{"title":"Immuno-PET Imaging of Siglec-15 Using the Zirconium-89-Labeled Therapeutic Antibody, NC318","authors":"E. Jagoda, F. Basuli, C. Olkowski, Ido D. Weiss, Tim E. Phelps, Karen J. Wong, Anita T. Ton, Kelly C. Lane, S. Adler, D. Butcher, E. Edmondson, S. Langermann, P. Choyke","doi":"10.1155/2023/3499655","DOIUrl":"https://doi.org/10.1155/2023/3499655","url":null,"abstract":"Objective. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is overexpressed in various cancers which has led to the development of therapeutic anti-Siglec-15 monoconal antibodies (mAbs). In these preclinical studies, the therapeutic mAb, NC318 (antihuman/murine Siglec-15 mAb), was labeled with zirconium-89 and evaluated in human Siglec-15 expressing cancer cells and mouse xenografts for potential use as a clinical diagnostic imaging agent. Methods. Desferrioxamine-conjugated NC318 was radiolabeled with zirconium-89 to synthesize [89Zr]Zr-DFO-NC318. Cancer cell lines expressing variable Siglec-15 levels were used for in vitro cell binding studies and tumor xenograft mouse models for biodistributions. [89Zr]Zr-DFO-NC318 biodistribution and PET imaging studies to determine tissue uptakes (tissue : muscle ratios, T : M) included pharmacokinetic evaluation in Siglec-15+tumor xenografts and immunocompetent mice, blocking with nonradioactive NC318 (20, 100, and 300 μg) and xenografts with low/negligible Siglec-15 expressing tumors. Results. [89Zr]Zr-DFO-NC318 exhibited high affinity (\u0000 \u0000 \u0000 \u0000 K\u0000 \u0000 \u0000 d\u0000 \u0000 \u0000 \u0000 ~4 nM) for Siglec-15 and distinguished between moderate and negligible Siglec-15 expression levels in cancer cell lines. The highest [89Zr]Zr-DFO-NC318 uptakes occurred in the spleen and lymph nodes of the Siglec-15+tumor xenografts at all time points followed by Siglec-15+tumor uptake which was lower although highly retained. In immunocompetent mice, the spleen and lymph nodes exhibited lower uptakes indicating that the athymic xenografts had increased Siglec-15+ immune cells. Specific [89Zr]Zr-DFO-NC318 binding to Siglec-15 was proven with NC318 blocking studies in which dose-dependent decreases in Siglec-15+tumor T : Ms were observed. Higher than expected, tumor T : Ms were seen in lower expressing tumors likely due to the contribution of murine Siglec-15+ immune cells in the tumor microenvironment as confirmed by immunohistochemistry. Siglec-15+tumors were identified on PET images whereas low/negligible expressing tumors showed lower uptakes. Conclusions. In vitro and in vivo [89Zr]Zr-DFO-NC318 uptakes correlated with Siglec-15 expression levels in target tissues. Despite uptake in immune cell subsets in the tumor microenvironment, these results suggest that clinical [89Zr]Zr-DFO-NC318 PET imaging may have value in selecting patients for Siglec-15-targeted therapies.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42236337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Chong, Dinh-Huy Nguyen, H. Kim, June-Key Chung, J. Min
{"title":"Pattern of F-18 FDG Uptake in Colon Cancer after Bacterial Cancer Therapy Using Engineered Salmonella Typhimurium: A Preliminary In Vivo Study","authors":"A. Chong, Dinh-Huy Nguyen, H. Kim, June-Key Chung, J. Min","doi":"10.1155/2022/9222331","DOIUrl":"https://doi.org/10.1155/2022/9222331","url":null,"abstract":"Purpose Bacterial cancer therapy (BCT) research using engineered Salmonella typhimurium has increased in recent years. 2-Deoxy-2[18F] fluoro-D-glucose positron emission tomography (FDG PET) is widely used in cancer patients to detect cancer, monitor treatment responses, and predict prognoses. The aim of this pilot study was to investigate FDG uptake patterns in a mouse tumor model after BCT. Procedures. BCT was performed via the intravenous injection of attenuated S. typhimurium (SLΔppGpp/lux) into female mice bearing a tumor (derived from CT26 murine colon cancer cells) in the right thigh. 18F-FDG PET images acquired before BCT and at different time points after BCT. In vivo bioluminescence imaging confirmed bacterial presence in the tumor. The tumor volume, standardized uptake value (SUV) of FDG (SUVmax and SUVmean), early SUV reduction%, and normalized tumor volume change were analyzed. Results Early after BCT (1 or 2 days post-injection (dpi)), FDG tumor uptake decreased in 10 out of 11 mice and then increased at later stages. FDG uptake before BCT was correlated with normalized tumor volume change after BCT. Early FDG reduction% after BCT was correlated with normalized volume change after BCT. Conclusions Early after BCT, FDG tumor uptake decreased and then increased at later stages. The higher the FDG tumor uptake before BCT, the better the BCT response. FDG uptake patterns were related to tumor volume change after BCT. Therefore, FDG uptake was a good candidate for evaluating BCT.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45768300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brittany M. Stopa, J. Crowley, C. Juhász, Cara M Rogers, M. Witcher, J. Kiser
{"title":"Prostate-Specific Membrane Antigen as Target for Neuroimaging of Central Nervous System Tumors","authors":"Brittany M. Stopa, J. Crowley, C. Juhász, Cara M Rogers, M. Witcher, J. Kiser","doi":"10.1155/2022/5358545","DOIUrl":"https://doi.org/10.1155/2022/5358545","url":null,"abstract":"Introduction Positron emission tomography (PET) imaging with prostate-specific membrane antigen- (PSMA-) binding tracers has been found incidentally to demonstrate uptake in CNS tumors. Following the encouraging findings of several such case reports, there is a growing interest in the potential application of PSMA-targeted PET imaging for diagnostics, theranostics, and monitoring of CNS tumors. This is a systematic literature review on PSMA-binding tracers in CNS tumors. Methods A PubMed search was conducted, including preclinical and clinical reports. One hundred and twelve records were identified, and after screening, 56 were included in the final report. Results Tissue studies demonstrated PSMA expression in tumor vascular endothelial cells, without expression in normal brain tissue, though the extent and intensity of staining varied by anti-PSMA antibody and methodology. Most included studies reported on gliomas, which showed strong PSMA ligand uptake and more favorable tumor to background ratios than other PET tracers. There are also case reports demonstrating PSMA ligand uptake in prostate cancer brain metastases, nonprostate cancer brain metastases, and meningiomas. We also review the properties of the various PSMA-binding radiotracers available. Therapeutic and theranostic applications of PSMA-binding tracers have been studied, including labeled alpha- and beta-ray emitting isotopes, as well as PSMA targeting in directing MRI-guided focused ultrasound. Conclusions There is a potential application for PSMA-targeted PET in neuro-oncology as a combination of diagnostic and therapeutic use, as a theranostic modality for managing CNS tumors. Further research is needed regarding the mechanism(s) of PSMA expression in CNS tumors and its differential performance by tumor type.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":"2022 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42369831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Near-Infrared Fluorescence Imaging of EGFR-Overexpressing Tumors in the Mouse Xenograft Model Using scFv-IRDye800CW and Cetuximab-IRDye800CW","authors":"A. Amini, Y. Safdari, Fatemeh Tash Shamsabadi","doi":"10.1155/2022/9589820","DOIUrl":"https://doi.org/10.1155/2022/9589820","url":null,"abstract":"EGFR (epidermal growth factor receptor) is overexpressed in a variety of human cancers (including squamous cell carcinoma of head and neck, colon cancer, and some breast cancers) and therefore is regarded as an ideal target for cancer therapy or imaging purposes. In the current study, we produced a scFv-based near-infrared probe (called cet.Hum.scFv-IRDye-800CW) and evaluated its ability in recognizing and imaging of EGFR-overexpressing tumors in a mouse model. Like the molecular probe consisting of its parental antibody (cetuximab, an FDA-approved monoclonal antibody) and IRD800CW, cet.Hum.scFv-IRDye-800CW was able to recognize EGFR-overexpressing tumors in mice. cet.Hum.scFv-IRDye-800CW was found to be superior to the cetuximab-based probe in imaging of mouse tumors. The tumor-to-background ratio and blood clearance rate were higher when cet.Hum.scFv-IRDye-800CW was used as an imaging probe.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43232756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob Schade Engbjerg, Vincenzo Costanzo, Donato Sardella, L. Bordoni, S. Jakobsen, Luciano D’Apolito, J. Frøkiær, F. Trepiccione, G. Capasso, S. Frische
{"title":"The Probe for Renal Organic Cation Secretion (4-Dimethylaminostyryl)-N-Methylpyridinium (ASP+)) Shows Amplified Fluorescence by Binding to Albumin and Is Accumulated In Vivo","authors":"Jacob Schade Engbjerg, Vincenzo Costanzo, Donato Sardella, L. Bordoni, S. Jakobsen, Luciano D’Apolito, J. Frøkiær, F. Trepiccione, G. Capasso, S. Frische","doi":"10.1155/2022/7908357","DOIUrl":"https://doi.org/10.1155/2022/7908357","url":null,"abstract":"Accumulation of uremic toxins may lead to the life-threatening condition “uremic syndrome” in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)-N-methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer. This study is aimed at expanding the knowledge of the tracer characteristics of ASP+ by recording the distribution and intensity of ASP+ signals in vivo both by fluorescence and by positron emission tomography (PET) imaging and at investigating if the fluorescence signal of ASP+ is influenced by the presence of albumin. Two-photon in vivo microscopy of male Münich Wistar Frömter rats showed that a bolus injection of ASP+ conferred a fluorescence signal to the blood plasma lasting for about 30 minutes. In the renal proximal tubule, the bolus resulted in a complex pattern of fluorescence including a rapid and strong transient signal at the brush border, a very low signal in the luminal fluid, and a slow transient intracellular signal. PET imaging using 11C-labelled ASP+ showed accumulation in the liver, heart, and kidney. Fluorescence emission spectra recorded in vitro of ASP+ alone and in the presence of albumin using both 1-photon excitation and two-photon excitation showed that albumin strongly enhance the emission from ASP+ and induce a shift of the emission maximum from 600 to 570 nm. Conclusion. The renal pattern of fluorescence observed from ASP+ in vivo is likely affected by the local concentration of albumin, and quantification of ASP+ fluorescent signals in vivo cannot be directly translated to ASP+ concentrations.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49265843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiale Hou, T. Long, Yi Yang, Dengming Chen, Shuo Hu
{"title":"The Potential Prognostic Value of Dual-Imaging PET Parameters Based on 18F-FDG and 18F-OC for Neuroendocrine Neoplasms","authors":"Jiale Hou, T. Long, Yi Yang, Dengming Chen, Shuo Hu","doi":"10.1155/2022/6511179","DOIUrl":"https://doi.org/10.1155/2022/6511179","url":null,"abstract":"Background To identify parameters based on dual-imaging 18F-AlF-NOTA-octreotide (18F-OC) and 18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) for predicting the prognosis of neuroendocrine neoplasms (NENs). Materials and Methods Sixty-six patients (age: mean ± standard deviation (SD): 51.8 ± 11.8 years) who underwent both 18F-OC and 18F-FDG PET/CT imaging were enrolled in our retrospective study. The following PET parameters were measured: the maximum standardized uptake value (SUVmax) and the volumetric parameters—18F-OC SSR-derived tumor volume (TV) and somatostatin receptor expression (SRE, TV multiplied by the mean standardized uptake value (SUVmean)) and the 18F-FDG-derived multiple tumor volume (MTV) and tumor lesion glycolysis (TLG). The NETPET grade based on dual-imaging PET images was assessed. Progression-free survival (PFS) was set as an endpoint. Univariate and multivariate survival analyses were performed for PET parameters and clinical tumor data. Results In the univariate survival analyses of clinical information, PFS was significantly associated with age (>45.5 vs ≤45.5, years, P < 0.034) and the presence of bone metastases (P = 0.04). Higher values for the 18F-FDG and 18F-OC volumetric parameters and the NETPET grade were adverse factors for PFS according to the dual-imaging PET parameters. In the multivariate survival analysis, the NETPET grade and SRE were predictors of PFS in NEN patients. Conclusion The NETPET grade is a potential noninvasive prognostic biomarker for NENs.","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42776222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of [<sup>18</sup>F]tetrafluoroborate as a Potential PET Imaging Agent in a Sodium Iodide Symporter-Transfected Cell Line A549 and Endogenous NIS-Expressing Cell Lines MKN45 and K1.","authors":"Mengda Niu, Jingjing Qin, Liang Wang, Yujia He, Chuanhuizi Tian, Yanyan Chen, Pufeng Huang, Zhiping Peng","doi":"10.1155/2022/2679260","DOIUrl":"https://doi.org/10.1155/2022/2679260","url":null,"abstract":"<p><p>[<sup>18</sup>F]tetrafluoroborate (TFB) has been introduced as the <sup>18</sup>F-labeled PET imaging probe for the human sodium iodide symporter (NIS). Noninvasive NIS imaging using [<sup>18</sup>F]TFB has received much interest in recent years for evaluating various NIS-expressing tumors. Cancers are a global concern with enormous implications; therefore, improving diagnostic methods for accurate detection of cancer is extremely important. Our aim was to investigate the PET imaging capabilities of [<sup>18</sup>F]TFB in NIS-transfected lung cell line A549 and endogenous NIS-expressing tumor cells, such as thyroid cancer K1 and gastric cancer MKN45, and broaden its application in the medical field. Western blot and flow cytometry were used to assess the NIS expression level. Radioactivity counts of [<sup>18</sup>F]TFB, <i>in vitro</i>, in the three tumor cells were substantially higher than those in the KI inhibition group in the uptake experiment. <i>In vivo</i> PET imaging clearly delineated the three tumors based on the specific accumulation of [<sup>18</sup>F]TFB in a mouse model. <i>Ex vivo</i> biodistribution investigation showed high [<sup>18</sup>F]TFB absorption in the tumor location, which was consistent with the PET imaging results. These results support the use of NIS-transfected lung cell line A549 and NIS-expressing tumor cells MKN45 and K1, to investigate probing capabilities of [<sup>18</sup>F]TFB. We also demonstrate, for the first time, the feasibility of [<sup>18</sup>F]TFB in diagnosing stomach cancer. In conclusion, this study illustrates the promising future of [<sup>18</sup>F]TFB for tumor diagnosis and NIS reporter imaging.</p>","PeriodicalId":49796,"journal":{"name":"Molecular Imaging","volume":"2022 ","pages":"2679260"},"PeriodicalIF":2.8,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40324280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}