Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2022-0006
Jessica Prebor, Brittany Samulski, Cortney Armitano-Lago, Steven Morrison
{"title":"Patterns of Movement Performance and Consistency From Childhood to Old Age.","authors":"Jessica Prebor, Brittany Samulski, Cortney Armitano-Lago, Steven Morrison","doi":"10.1123/mc.2022-0006","DOIUrl":"https://doi.org/10.1123/mc.2022-0006","url":null,"abstract":"<p><p>It is widely accepted that the general process of aging can be reflected by changes in motor function. Typically, optimal performance of a given motor task is observed for healthy young adults with declines being observed for individuals at either end of the lifespan. This study was designed to examine differences in the average and variability (i.e., intraindividual variability) of chewing, simple reaction time, postural control, and walking responses. For this study, 15 healthy children, 15 young adults, and 15 older adults participated. Our results indicated the movement performance for the reaction time and postural sway followed a U shape with young adults having faster reaction times and decreased postural sway compared to the children and older adults. However, this pattern was not preserved across all motor tasks with no age differences emerging for (normalized) gait speed, while chewing rates followed a U-shaped curve with older adults and children chewing at faster rates. Taken together, these findings would indicate that the descriptive changes in motor function with aging are heavily influenced by the nature of the task being performed and are unlikely to follow a singular pattern.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"258-274"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9290873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2022-0094
Mark L Latash, Shirin Madarshahian, Joseph M Ricotta
{"title":"Intramuscle Synergies: Their Place in the Neural Control Hierarchy.","authors":"Mark L Latash, Shirin Madarshahian, Joseph M Ricotta","doi":"10.1123/mc.2022-0094","DOIUrl":"https://doi.org/10.1123/mc.2022-0094","url":null,"abstract":"<p><p>We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control-the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis-to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"402-441"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9230869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2022-0073
Michal Vagner, Daniel J Cleather, Petr Kubový, Vladimír Hojka, Petr Stastny
{"title":"Principal Component Analysis can Be Used to Discriminate Between Elite and Sub-Elite Kicking Performance.","authors":"Michal Vagner, Daniel J Cleather, Petr Kubový, Vladimír Hojka, Petr Stastny","doi":"10.1123/mc.2022-0073","DOIUrl":"https://doi.org/10.1123/mc.2022-0073","url":null,"abstract":"<p><p>Contemporary descriptions of motor control suggest that variability in movement can be indicative of skilled or unskilled performance. Here we used principal component analysis to study the kicking performance of elite and sub-elite soldiers who were highly familiar with the skill in order to compare the variability in the first and second principal components. The subjects kicked a force plate under a range of loaded conditions, and their movement was recorded using optical motion capture. The first principal component explained >92% of the variability across all kinematic variables when analyzed separately for each condition, and both groups and explained more of the variation in the movement of the elite group. There was more variation in the loading coefficient of the first principal component for the sub-elite group. In contrast, for the second principal component, there was more variation in the loading coefficient for the elite group, and the relative magnitude of the variation was greater than for the first principal component for both groups. These results suggest that the first principal component represented the most fundamental movement pattern, and there was less variation in this mode for the elite group. In addition, more of the variability was explained by the hip than the knee angle entered when both variables were entered into the same PCA, which suggests that the movement is driven by the hip.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"354-372"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2021-0136
Hui-Ting Goh, Jill Campbell Stewart, Kevin Becker, Cheng-Ju Hung
{"title":"Memory-Guided Reaching: Is It Effortful?","authors":"Hui-Ting Goh, Jill Campbell Stewart, Kevin Becker, Cheng-Ju Hung","doi":"10.1123/mc.2021-0136","DOIUrl":"https://doi.org/10.1123/mc.2021-0136","url":null,"abstract":"<p><p>We previously showed that perceived effort during visually guided reaching was altered as task demand varied. Further, self-reported subjective fatigue correlated with perceived effort and reach performance under visually guided conditions. Memory-guided reaching often leads to performance deterioration and can provide insights about the planning and control of reach actions. It is unclear how perceived effort changes during memory-guided reaching and whether self-reported subjective fatigue is associated with perceived effort of memory-guided reaching. Twenty-three young adults performed reach actions under visually- and memory-guided conditions. Perceived effort, reaction time, and endpoint error increased significantly from the visually- to the memory-guided condition. Self-reported subjective fatigue was associated with perceived effort and reach distance error during memory-guided reaching; those with higher levels of fatigue reported greater perceived effort and tended to reach farther when visual information was not available. These findings establish a foundation to examine relationships between subjective fatigue, perceived effort, and reach control.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"194-216"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9590196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2022-0017
Francesco Frontani, Marco Prenassi, Viviana Paolini, Giovanni Formicola, Sara Marceglia, Francesca Policastro
{"title":"Dominant and Nondominant Leg Kinematics During Kicking in Young Soccer Players: A Cross-Sectional Study.","authors":"Francesco Frontani, Marco Prenassi, Viviana Paolini, Giovanni Formicola, Sara Marceglia, Francesca Policastro","doi":"10.1123/mc.2022-0017","DOIUrl":"https://doi.org/10.1123/mc.2022-0017","url":null,"abstract":"<p><p>The goal of the study is to analyze the kinematics and provide an EMG analysis of the support limb during an instep kick in adolescent players. We set a video camera, two torque transducers on the knee, and EMG sensors. A sample of 16 adolescent soccer players between 10 and 12 years old performed kicks. The kinematics shows a p = .039 on frontal plane (dominant 15.4 ± 1.8, nondominant 18.8 ± 1.7); the EMG analysis shows a p = .04 on muscular activation timing for the vastus medialis. A difference between the legs on the frontal plane emerges. Moreover, a huge difference on sagittal plane between the adolescent pattern and adult pattern exists (15° in adolescent population, 40° in adult population). The result shows a greater activation of the vastus medialis in the nondominant leg; probably, in this immature pattern, the adolescents use this muscle more than necessary.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"327-337"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9238176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2022-0023
Yue Luo, Nicolas Grimaldi, Haolan Zheng, Wayne C W Giang, Boyi Hu
{"title":"Distraction From Smartphones Changed Pedestrians' Walking Behaviors in Open Areas.","authors":"Yue Luo, Nicolas Grimaldi, Haolan Zheng, Wayne C W Giang, Boyi Hu","doi":"10.1123/mc.2022-0023","DOIUrl":"https://doi.org/10.1123/mc.2022-0023","url":null,"abstract":"<p><p>The prevalence of phone use has become a major concern for pedestrian safety. Using smartphones while walking reduces pedestrians' ability to perceive the environment by increasing their cognitive, manual, and visual demands. The purpose of this study was to investigate the effect of common phone tasks (i.e., reading, tapping, gaming) on walking behaviors during outdoor walking. Nineteen young adults were instructed to complete four walking conditions (walking only, walking-reading, walking-tapping, and walking-gaming) along an open corridor. Results showed that all three phone tasks increased participants' neck flexion (i.e., neck kyphosis) during walking. Meanwhile, the reading task showed a greater influence on the temporal aspect during the early phases of a gait cycle. The tapping task lowered the flexion angles of the middle and lower back (i.e., torso lordosis) and induced a longer terminal double support. And the gaming task resulted in a decrease in middle back flexion, a shorter stride length, and a longer terminal double support while walking. Findings from the study confirmed our hypothesis that phone tasks changed pedestrians' physical responses to smartphone distraction while walking. To avoid potential risks caused by the observed posture and gait adaptations, safety precautions (e.g., roadside/electronic warning signals) might be imposed depending on the workload expected by different phone tasks.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"275-292"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9242404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-04-01DOI: 10.1123/mc.2021-0094
Jing Wen Pan, Pui Wah Kong, John Komar
{"title":"Adaptive Regulation in a Stable Performance Environment: Trial-To-Trial Consistency in Cue Sports Performance.","authors":"Jing Wen Pan, Pui Wah Kong, John Komar","doi":"10.1123/mc.2021-0094","DOIUrl":"https://doi.org/10.1123/mc.2021-0094","url":null,"abstract":"<p><p>This study aimed to investigate individual trial-to-trial performance in three tests to define adaptive regulation as a key feature of expertise in nine-ball. Thirty-one male players were assigned into the low-skilled (n = 11), intermediate (n = 10), or high-skilled groups (n = 10). The power control, cue alignment, and angle tests were selected to assess participants' ability to control the power applied in shots, strike the ball straight, and understand the ball paths, respectively. Error distance and correction of error distance were identified for each shot using 2D video analysis. Results of one-way analysis of variance showed that the high-skilled group performed better in two out of the three tests than the other two groups (p = .010 for the cue alignment test; p = .002 for the angle test). However, the adaptation effect represented by the decreased error distances across trials was not observed. Pearson correlation revealed only a few significant correlations between the error distance and its correction within each participant in all tests (p < .05), and hence, the hypothesis that \"low correction happened after small error and vice versa\" is not supported.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"242-257"},"PeriodicalIF":1.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9290872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-01-01DOI: 10.1123/mc.2022-0098
Thomas Jacob, Swarnab Dutta, Salai Jeyaseelan Annamalai, Varadhan Skm
{"title":"Inverse Saxophone-A Device to Study the Role of Individual Finger Perturbations on Grasp Stability.","authors":"Thomas Jacob, Swarnab Dutta, Salai Jeyaseelan Annamalai, Varadhan Skm","doi":"10.1123/mc.2022-0098","DOIUrl":"https://doi.org/10.1123/mc.2022-0098","url":null,"abstract":"<p><p>The efficient coordination of fingertip forces to maintain static equilibrium while grasping an object continues to intrigue scientists. While many studies have explored this coordination, most of these studies assumed that interactions of hands primarily occur with rigid inanimate objects. Instead, our daily interactions with living and nonliving entities involve many dynamic, compliant, or fragile bodies. This paper investigates the fingertip force coordination on a manipulandum that changes its shape while grasping it. We designed a five-finger perturbation system with linear actuators at positions corresponding to each finger that would protrude outward from the center of the handle or retract toward the center of the handle as programmed. The behavior of the perturbed fingers and the other fingers while grasping this device was studied. Based on previous experiments on expanding and contracting handles, we hypothesized that each finger would exhibit a comparable response to similar horizontal perturbations. However, the response of the little finger was significantly different from the other fingers. We speculate that the central nervous system demonstrates preferential recruitment of some fingers over others while performing a task.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 1","pages":"54-70"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10411918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-01-01DOI: 10.1123/mc.2021-0125
Hao Meng, Stacey L Gorniak
{"title":"Obesity Is Associated With Gait Alterations and Gait Asymmetry in Older Adults.","authors":"Hao Meng, Stacey L Gorniak","doi":"10.1123/mc.2021-0125","DOIUrl":"https://doi.org/10.1123/mc.2021-0125","url":null,"abstract":"<p><strong>Objectives: </strong>The prevalence of obesity (OB) has increased in the older adult (OA) population. However, it is not quite clear whether OB exaggerates gait instability and leads to a higher risk of falls in OAs. The first goal of this study was to investigate whether OB is associated with gait alterations and gait asymmetry in OAs. The second goal of this study was to examine relationships between various OB measures with gait measures and gait symmetry measures in OAs.</p><p><strong>Methods: </strong>A total of 30 OAs were included and categorized according to their body mass index (BMI) values into groups of persons with normal weight (NW), overweight (OW), and OB. Participants were required to complete an anthropometric assessment, a body composition assessment, and overground walking tests.</p><p><strong>Results: </strong>The group with OB had shorter swing phase, longer stance phase, and shorter single support phase than the NW group. Increased body weight, BMI, visceral adipose tissue mass, and android fat had correlations with shorter swing phase, longer stance phase, and shorter single support phase. Increased body weight and BMI had significantly positive correlations with symmetry index of knee range of motion.</p><p><strong>Conclusions: </strong>OB may impair gait automation capacity in OAs. Both body weight and BMI remain good measures in terms of establishing correlations with gait stability in OAs. However, the amount of fat mass surrounding the abdomen could be vital to interpreting the alterations in the gait of OAs with obesity.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 1","pages":"6-19"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10455327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motor ControlPub Date : 2023-01-01DOI: 10.1123/mc.2022-0016
Todd C Pataky
{"title":"Using Monte Carlo Simulation to Propagate Processing Parameter Uncertainty to the Statistical Analyses of Biomechanical Trajectories.","authors":"Todd C Pataky","doi":"10.1123/mc.2022-0016","DOIUrl":"https://doi.org/10.1123/mc.2022-0016","url":null,"abstract":"<p><p>Biomechanical trajectories are often routed through a chain of processing steps prior to statistical analysis. As changes in processing parameter values can affect these trajectories, care is required when choosing data processing specifics. The purpose of this Research Note was to demonstrate a simple way to propagate data processing parameter uncertainty to statistical inferences regarding biomechanical trajectories. As an example application, the correlation between foot contact duration and vertical ground reaction force during constant-speed treadmill walking was considered. Uncertainty was modeled using plausible-range uniform distributions in three data processing steps, and Monte Carlo simulation was used to construct probabilistic representations of both individual vertical ground reaction force measurements and the ultimate statistical results. Whereas an initial, plausible set of parameter values yielded a significant correlation between contact duration and late-stance vertical ground reaction force, Monte Carlo simulations revealed strong sensitivity, with \"significance\" being reached in fewer than 40% of simulations, with relatively little net effect of parameter uncertainty magnitude. These results indicate that propagating processing parameter uncertainty to statistical results promotes a cautious, nuanced, and robust view of observed effects. By extension, Monte Carlo simulations may yield greater interpretive consistency across studies involving data processing uncertainties.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 1","pages":"112-122"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}