{"title":"稳定表现环境中的适应性调节:球杆运动表现的试验-试验一致性。","authors":"Jing Wen Pan, Pui Wah Kong, John Komar","doi":"10.1123/mc.2021-0094","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate individual trial-to-trial performance in three tests to define adaptive regulation as a key feature of expertise in nine-ball. Thirty-one male players were assigned into the low-skilled (n = 11), intermediate (n = 10), or high-skilled groups (n = 10). The power control, cue alignment, and angle tests were selected to assess participants' ability to control the power applied in shots, strike the ball straight, and understand the ball paths, respectively. Error distance and correction of error distance were identified for each shot using 2D video analysis. Results of one-way analysis of variance showed that the high-skilled group performed better in two out of the three tests than the other two groups (p = .010 for the cue alignment test; p = .002 for the angle test). However, the adaptation effect represented by the decreased error distances across trials was not observed. Pearson correlation revealed only a few significant correlations between the error distance and its correction within each participant in all tests (p < .05), and hence, the hypothesis that \"low correction happened after small error and vice versa\" is not supported.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 2","pages":"242-257"},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Regulation in a Stable Performance Environment: Trial-To-Trial Consistency in Cue Sports Performance.\",\"authors\":\"Jing Wen Pan, Pui Wah Kong, John Komar\",\"doi\":\"10.1123/mc.2021-0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate individual trial-to-trial performance in three tests to define adaptive regulation as a key feature of expertise in nine-ball. Thirty-one male players were assigned into the low-skilled (n = 11), intermediate (n = 10), or high-skilled groups (n = 10). The power control, cue alignment, and angle tests were selected to assess participants' ability to control the power applied in shots, strike the ball straight, and understand the ball paths, respectively. Error distance and correction of error distance were identified for each shot using 2D video analysis. Results of one-way analysis of variance showed that the high-skilled group performed better in two out of the three tests than the other two groups (p = .010 for the cue alignment test; p = .002 for the angle test). However, the adaptation effect represented by the decreased error distances across trials was not observed. Pearson correlation revealed only a few significant correlations between the error distance and its correction within each participant in all tests (p < .05), and hence, the hypothesis that \\\"low correction happened after small error and vice versa\\\" is not supported.</p>\",\"PeriodicalId\":49795,\"journal\":{\"name\":\"Motor Control\",\"volume\":\"27 2\",\"pages\":\"242-257\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motor Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/mc.2021-0094\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2021-0094","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Adaptive Regulation in a Stable Performance Environment: Trial-To-Trial Consistency in Cue Sports Performance.
This study aimed to investigate individual trial-to-trial performance in three tests to define adaptive regulation as a key feature of expertise in nine-ball. Thirty-one male players were assigned into the low-skilled (n = 11), intermediate (n = 10), or high-skilled groups (n = 10). The power control, cue alignment, and angle tests were selected to assess participants' ability to control the power applied in shots, strike the ball straight, and understand the ball paths, respectively. Error distance and correction of error distance were identified for each shot using 2D video analysis. Results of one-way analysis of variance showed that the high-skilled group performed better in two out of the three tests than the other two groups (p = .010 for the cue alignment test; p = .002 for the angle test). However, the adaptation effect represented by the decreased error distances across trials was not observed. Pearson correlation revealed only a few significant correlations between the error distance and its correction within each participant in all tests (p < .05), and hence, the hypothesis that "low correction happened after small error and vice versa" is not supported.
期刊介绍:
Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation.
Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders.
Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement.
In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.